Skip to main content

Growth condition controls on G-93 parameters of isoprene emission from tropical trees

Abstract

Despite its major role in global isoprene emission, information on the environmental control of isoprene emission from tropical trees has remained scarce. Thus, in this study, we examined the relationship between parameters of G-93 isoprene emission formula (CT1, CT2, and α), growth temperature and light intensity, photosynthesis (ɸ, Pmax), isoprene synthase (IspS) level, and 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway metabolites using sunlit and shaded leaves of four tropical trees. The results showed that the temperature dependence of isoprene emission from shaded leaves did not differ significantly from sunlit leaves. In contrast, there was a lower saturation irradiance in shaded leaves than in sunlit leaves, the same as temperate plants. The photosynthesis rate of shaded leaves showed lower saturation irradiance, similar to the light dependence of isoprene emission. In most cases, the concentration of MEP pathway metabolites was of lower tendency in shaded leaves versus in sunlit leaves, whereas no significant difference was noted in IspS level between sunlit and shaded leaves. Correlation analysis between these parameters found that CT1 of the G-93 parameter was positively correlated with the concentration of DXP and DMADP, whereas CT2 correlated with the concentration of MEP and the average air temperature for the past 48 h. Similarly, α closely associated with the initial slope (ɸ) of photosynthesis rate, and the basal emission factor is also linked to the photon flux of past days. These results suggest that growth conditions may control the temperature dependence of isoprene emission from tropical trees via the changes in the profiles of MEP pathway metabolites, causing alteration in the parameters of the isoprene emission formula.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Alves EG, Harley P, Goncalves JFD, Moura CED, Jardine K (2014) Effects of light and temperature on isoprene emission at different leaf developmental stages of Eschweilera coriacea in central Amazon. Acta Amazon 44:9–18

    CAS  Article  Google Scholar 

  • Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI (2008) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620

    CAS  Article  Google Scholar 

  • Arntz HR, Willich SN, Schreiber C, Bruggemann T, Stern R, Schultheiss HP (2000) Diurnal, weekly and seasonal variation of sudden death—population-based analysis of 24 061 consecutive cases. Eur Heart J 21:315–320

    CAS  PubMed  Article  Google Scholar 

  • Banerjee A, Wu Y, Banerjee R, Li Y, Yan HG, Sharkey TD (2013) Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J Biol Chem 288:16926–16936

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Benjamin MT, Sudol M, Bloch L,  Winer AM (1996) Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rates. Atmospheric Environment 30:1437–1452

    CAS  Article  Google Scholar 

  • Bruggemann N, Schnitzler JP (2002) Diurnal variation of dimethylallyl diphosphate concentrations in oak (Quercus robur) leaves. Physiol Plant 115:190–196

    CAS  PubMed  Article  Google Scholar 

  • Causton DR, Dale MP (1990) The monomolecular and rectangular hyperbola as empirical models of the response of photosynthetic rate to photon flux density, aith application to three Veronica species. Ann Bot 65:389–394

    Article  Google Scholar 

  • Chang C-C, Chen T-Y, Lin C-Y, Yuan C-S, Liu S-C (2005) Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmos Environ 39:2867–2878

    CAS  Article  Google Scholar 

  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Lamb B, Liu S, Trainer M, Wesberg H (1992) Emissions of volatile organic compounds, from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 96:389–430

    Article  Google Scholar 

  • Galan AB, Rodriguez M, de Juana S, Dominguez-Rodrigo M (2009) A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. J Archaeol Sci 36:776–784

    Article  Google Scholar 

  • Geron C, Guenther A, Sharkey T, Arnts RR (2000) Temporal variability in basal isoprene emission factor. Tree Physiol 20:799–805

    PubMed  Article  Google Scholar 

  • Geron C, Guenther A, Greenberg J, Loescher HW, Clark D, Baker B (2002) Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmos Environ 36:3793–3802

    CAS  Article  Google Scholar 

  • Guenther AE, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emssion rate variability: model evaluations and sensitivity. J Geophys Res 98:12609–12617

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100:8873–8892

    CAS  Article  Google Scholar 

  • Guenther A, Otter L, Zimmerman P, Greenberg J, Scholes R, Scholes M (1996) Biogenic hydrocarbon emissions from southern African savannas. J Geophys Res Atmos 101:25859–25865

    CAS  Article  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    CAS  Article  Google Scholar 

  • Gupta S, Mishra K, Surolia A, Banerjee K (2011) Suppressor of cytokine signalling-6 promotes neurite outgrowth via JAK2/STAT5-mediated signalling pathway, involving negative feedback inhibition. PLoS ONE 6:e26674

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol 16:25–32

    CAS  PubMed  Article  Google Scholar 

  • Harley P, Guenther A, Zimmerman P (1997) Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiol 17:705–714

    CAS  PubMed  Article  Google Scholar 

  • He C, Murray F, Lyons T (2000) Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia. Atmos Environ 34:645–655

    CAS  Article  Google Scholar 

  • Higa T, Parveen S, Mutanda I, Iqbal MA, Inafuku M, Hashimoto F, Oku H (2018) Evaluation of isoprene emission rates of tropical trees by an iterative optimization procedure for G-93 parameters. Atmos Environ 192:209–217

    CAS  Article  Google Scholar 

  • Hills AJ, Zimmerman PR (1990) Isoprene measurement by ozone-induced chemiluminescence. Anal Chem 62:1055–1060

    CAS  Article  Google Scholar 

  • Jardine KJ, Meyers K, Abrell L, Alves EG, Serrano AM, Kesselmeier J, Karl T, Guenther A, Chambers JQ, Vickers C (2013) Emissions of putative isoprene oxidation products from mango branches under abiotic stress. J Exp Bot 64:3697–3709

    PubMed  Article  CAS  Google Scholar 

  • Jardine K, Yanez-Serrano AM, Williams J, Kunert N, Jardine A, Taylor T, Abrell L, Artaxo P, Guenther A, Hewitt CN, House E, Florentino AP, Manzi A, Higuchi N, Kesselmeier J, Behrendt T, Veres PR, Derstroff B, Fuentes JD, Martin ST, Andreae MO (2015) Dimethyl sulfide in the Amazon rain forest. Glob Biogeochem Cycles 29:19–32

    CAS  Article  Google Scholar 

  • Kim JC, Kim KJ, Kim DS, Han JS (2005) Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere 59:1685–1696

    CAS  PubMed  Article  Google Scholar 

  • Lantz AT, Allman J, Weraduwage SM, Sharkey TD (2019) Isoprene: new insights into the control of emission and mediation of stress tolerance by gene expression. Plant Cell Environ 42:2808–2826

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lerdau M, Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ 20:569–578

    CAS  Article  Google Scholar 

  • Li JJ, Wang GH, Wu C, Cao C, Ren YQ, Wang JY, Li J, Cao JJ, Zeng LM, Zhu T (2018) Characterization of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for anthropogenic pollution effects. Sci Rep Uk 8:1–10

    Google Scholar 

  • Loreto F, Fineschi S (2015) Reconciling functions and evolution of isoprene emission in higher plants. New Phytol 206:578–582

    CAS  PubMed  Article  Google Scholar 

  • Loreto F, Pinelli P, Brancaleoni E, Ciccioli P (2004) C-13 labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation. Plant Physiol 135:1903–1907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Meeningen Y, Schurgers G, Rinnan R, Holst T (2016) BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient. Biogeosciences 13:6067–6080

    Article  CAS  Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves : influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98:1175–1180

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther A, Zimmerman PR (1994) Evironmental and developmental controls over hte seasonal pattern of isoprene emission from aspen leaves. Oecologia 99:260–270

    CAS  PubMed  Article  Google Scholar 

  • Mutanda I, Inafuku M, Iwasaki H, Saitoh S, Fukuta M, Watanabe K, Oku H (2016a) Parameterization of G-93 isoprene emission formula for tropical trees Casuarina equisetifolia and Ficus septica. Atmos Environ 141:287–296

    CAS  Article  Google Scholar 

  • Mutanda I, Inafuku M, Saitoh S, Iwasaki H, Fukuta M, Watanabe K, Oku H (2016b) Temperature controls on the basal emission rate of isoprene in a tropical tree Ficus septica: exploring molecular regulatory mechanisms. Plant Cell Environ 39:2260–2275

    CAS  PubMed  Article  Google Scholar 

  • Oku H, Inafuku M, Takamine T, Nagamine M, Saitoh S, Fukuta M (2014) Temperature threshold of isoprene emission from tropical trees, Ficus virgata and Ficus septica. Chemosphere 95:268–273

    CAS  PubMed  Article  Google Scholar 

  • Oku H, Inafuku M, Ishikawa T, Takamine T, Ishmael M, Fukuta M (2015) Molecular cloning and biochemical characterization of isoprene synthases from the tropical trees Ficus virgata, Ficus septica, and Casuarina equisetifolia. J Plant Res 128:849–861

    CAS  PubMed  Article  Google Scholar 

  • Padhy PK, Varshney CK (2005) Emission of volatile organic compounds (VOC) from tropical plant species in India. Chemosphere 59:1643–1653

    CAS  PubMed  Article  Google Scholar 

  • Parveen S, Harun-Ur-Rashid M, Inafuku M, Iwasaki H, Oku H (2019a) Molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica. Tree Physiol 39:440–453

    CAS  PubMed  Article  Google Scholar 

  • Parveen S, Lqbal MA, Mutanda I, Harun-Ur-Rashid M, Inafuku M, Oku H (2019b) Plant hormone effects on isoprene emission from tropical tree in Ficus septica. Plant Cell Environ 42:1715–1728

    CAS  PubMed  Article  Google Scholar 

  • Petron G, Harley P, Greenberg J, Guenther A (2001) Seasonal temperature variations influence isoprene emission. Geophys Res Lett 28:1707–1710

    CAS  Article  Google Scholar 

  • Poisson N, Kanakidou M, Crutzen PJ (2000) Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230

    CAS  Article  Google Scholar 

  • Reich PB, Amundson RG (1985) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science 230:566–570

    CAS  PubMed  Article  Google Scholar 

  • Rinne HJI, Guenther AB, Greenberg JP, Harley PC (2002) Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature. Atmos Environ 36:2421–2426

    CAS  Article  Google Scholar 

  • Rodriguez-Concepcion M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25:17–22

    CAS  PubMed  Article  Google Scholar 

  • Runeckles VC, Chevone BI (1992) Crop responses to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis Publishers, Chelsea, pp 189–270

    Google Scholar 

  • Sharkey TD, Monson RK (2014) The future of isoprene emission from leaves, canopies and landscapes. Plant Cell Environ 37:1727–1740

    CAS  PubMed  Article  Google Scholar 

  • Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654

    CAS  PubMed  Article  Google Scholar 

  • Sharkey TD, Singsaas EL, Lerdau MT, Geron CD (1999) Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol Appl 9:1132–1137

    Article  Google Scholar 

  • Squire OJ, Archibald AT, Griffiths PT, Jenkin ME, Smith D, Pyle JA (2015) Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century. Atmos Chem Phys 15:5123–5143

    CAS  Article  Google Scholar 

  • Trainer M, Williams EJ, Parrish DD, Buhr MP, Allwine EJ, Westberg HH, Fehsenfeld FC, Liu FC (1987) Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 329:705–707

    CAS  Article  Google Scholar 

  • Vickers CE, Possell M, Nicholas Hewitt C, Mullineaux PM (2010) Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.). Plant Mol Biol 73:547–558

    CAS  PubMed  Article  Google Scholar 

  • Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, Raguschke B, Schnitzler JP, Gershenzon J, Phillips MA (2014) Deoxyxylulose 5-phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in Arabidopsis. Plant Physiol 165:1488–1504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Xiaoshan Z, Yujing M, Wenzhi S, Yahui Z (2000) Seasonal variations of isoprene emissions from deciduous trees. Atmos Environ 34:3027–3032

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the Japan Society for Promotion of Science (KAKENHI# 19H03089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Inafuku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1066 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oku, H., Iwai, S., Uehara, M. et al. Growth condition controls on G-93 parameters of isoprene emission from tropical trees. J Plant Res 134, 1225–1242 (2021). https://doi.org/10.1007/s10265-021-01344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01344-x

Keywords

  • Growth condition
  • G-93 formula
  • Isoprene emission
  • MEP metabolite
  • Parameters
  • Tropical trees