Skip to main content

Drought induces variation in the DNA methylation status of the barley HvDME promoter

Abstract

Cytosine methylation is an epigenetic modification with essential roles in diverse plant biological processes including vegetative and reproductive development and responsiveness to environmental stimuli. A dynamic process involving DNA methyltransferases and DNA demethylases establishes cytosine DNA methylation levels and distribution along the genome. A DNA demethylase gene from barley (Hordeum vulgare), DEMETER (HvDME), the homologue of the Arabidopsis thaliana DME (AtDME), has been characterized previously and found to respond to drought conditions. Here, the promoter of the HvDME gene was analysed further by in silico and DNA methylation analysis. The effect of drought conditions on the DNA methylation status of HvDME was investigated at single-cytosine resolution using bisulfite sequencing. It was demonstrated that the HvDME promoter can be divided into two discrete regions, in terms of DNA methylation level and density; a relatively unmethylated region proximal to the translational start site that is depleted of non-CG (CHG, CHH) methylation and another distal region, approximately 1500 bp upstream of the translational start site, enriched in CG, as well as non-CG methylation. Drought stress provoked alterations in the methylation status of the HvDME promoter distal region, whereas the DNA methylation of the proximal region remained unaffected. Computational analysis of the HvDME promoter revealed the presence of several putative regulatory elements related to drought responsiveness, as well as transposable elements (TEs) that may affect DNA methylation. Overall, our results expand our investigations of the epigenetic regulation of the HvDME gene in response to drought stress in barley and may contribute to further understanding of the epigenetic mechanisms underlying abiotic stress responses in barley and other cereals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aichinger E, Köhler C (2010) Bisulphite sequencing of plant genomic DNA. In: Hennig L, Köhler C (eds) Plant developmental biology. Springer, Berlin, pp 433–443

    Chapter  Google Scholar 

  • Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Persp Biol 6:a019471. https://doi.org/10.1101/cshperspect.a019471ect

    Article  Google Scholar 

  • Begcy K, Dresselhaus T (2018) Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reprod 31:343–355

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chang W-C, Lee T-Y, Huang H-D, Huang H-Y, Pan R-L (2008) PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genom 9:561

    Article  CAS  Google Scholar 

  • Chano V, Domínguez-Flores T, Hidalgo-Galvez MD, Rodríguez-Calcerrada J, Pérez-Ramos IM (2021) Epigenetic responses of hare barley (Hordeum murinum subsp. leporinum) to climate change: an experimental, trait-based approach. Heredity. https://doi.org/10.1038/s41437-021-00415-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    CAS  PubMed  Article  Google Scholar 

  • Choi Y, Harada JJ, Goldberg RB, Fischer RL (2004) An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene. Proc Natl Acad Sci USA 101:7481–7486. https://doi.org/10.1073/pnas.0402328101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chwialkowska K, Nowakowska U, Mroziewicz A, Szarejko I, Kwasniewski M (2016) Water-deficiency conditions differently modulate the methylome of roots and leaves in barley (Hordeum vulgare L.). J Exp Bot 67:1109–1121

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Diez CM, Roessler K, Gaut BS (2014) Epigenetics and plant genome evolution. Curr Opin Plant Biol 18:1–8. doi:https://doi.org/10.1016/j.pbi.2013.11.017

    CAS  Article  PubMed  Google Scholar 

  • Du J, Zhong X, Yana ΒVB, Stroud H, Feng S, Caro E, Ajay ΒAV, Terragni J, Hang ΒGC, Tu A, Hetzel J, James ΒAW, Pradhan S, Dinshaw ΒJP, Steven ΒEJ (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151:167–180. https://doi.org/10.1016/j.cell.2012.07.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Ellis NA, Makarevitch I, Yeh C-T, Gent JI, Guo L, McGinnis KM, Zhang X, Schnable PS, Vaughn MW (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLOS Genet 8:e1003127

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • FAO (2018) FAO. 2018. FAOSTAT Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/faostat/en/. Accessed 2018

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627. https://doi.org/10.1126/science.1190614

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira LJ, Donoghue MT, Barros P, Saibo NJ, Santos AP, Oliveira MM (2019) Uncovering differentially methylated regions (DMRs) in a salt-tolerant rice variety under stress: one step towards new regulatory regions for enhanced salt tolerance. Epigenomes 3:4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13:9900–9922

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Garg R, Chevala VN, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:1–16

    Google Scholar 

  • Gehring M, Bubb K, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gonzalez RM, Ricardi MM, Iusem ND (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8:864–872. https://doi.org/10.4161/epi.25524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform 9:371

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, pp 95–98

  • Henderson IR, Chan SR, Cao X, Johnson L, Jacobsen SE (2010) Accurate sodium bisulfite sequencing in plants. Epigenetics 5:47–49. doi:https://doi.org/10.4161/epi.5.1.10560

    CAS  Article  PubMed  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428. https://doi.org/10.1101/gr.091678.109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ibarra CA, Feng X, Schoft VK, Hsieh T-F, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364. https://doi.org/10.1126/science.1224839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Zhang Y, Fei J, Chang X, Fan W, Qian X, Zhang T, Lu D (2010) Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab Investig 90:282–290

    CAS  PubMed  Article  Google Scholar 

  • Joseph PC, Borges F, Mark TAD, Van Ex F, Jullien Pauline E, Lopes T, Gardner R, Berger F, Feijo Jose A, Becker Jorg D, Martienssen Robert A (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    Article  CAS  Google Scholar 

  • Kapazoglou A, Tondelli A, Papaefthimiou D, Ampatzidou H, Francia E, Stanca M, Bladenopoulos K, Tsaftaris A (2010) Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG) genes during seed development and in response to external ABA. BMC Plant Biol 10:73

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kapazoglou A, Engineer C, Drosou V, Kalloniati C, Tani E, Tsaballa A, Kouri E, Ganopoulos I, Flemetakis E, Tsaftaris A (2012) The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC Plant Biol 12:166

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kapazoglou A, Drosou V, Argiriou A, Tsaftaris A (2013) The study of a barley epigenetic regulator, HvDME, in seed development and under drought. BMC Plant Biol 13:172

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7:e40203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Khan S-A, Li M-Z, Wang S-M, Yin H-J (2018) Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci 19:1634

    PubMed Central  Article  CAS  Google Scholar 

  • Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJJ, Koornneef M, Kakutani T (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49:38–45. https://doi.org/10.1111/j.1365-313X.2006.02936.x

    CAS  Article  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic {DNA} methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  PubMed  Article  Google Scholar 

  • Kohany O, Gentles A, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474

    Article  CAS  Google Scholar 

  • Konate M, Wilkinson MJ, Mayne BT, Pederson SM, Scott ES, Berger B, Lopez CMR (2018) Salt stress induces non-CG methylation in coding regions of barley seedlings (Hordeum vulgare). Epigenomes 2:12

    Article  CAS  Google Scholar 

  • Kong L, Liu Y, Wang X, Chang C (2020) Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley. Int J Mol Sci 21:1480

    CAS  PubMed Central  Article  Google Scholar 

  • Lang Z, Wang Y, Tang K, Tang D, Datsenka T, Cheng J, Zhang Y, Handa AK, Zhu J-K (2017) Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci 114:E4511–E4519

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Le T-N, Schumann U, Smith NA, Tiwari S, Au PCK, Zhu Q-H, Taylor JM, Kazan K, Llewellyn DJ, Zhang R (2014a) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15:458

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Le T-N, Schumann U, Smith NA, Tiwari S, Au PCK, Zhu Q-H, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, Dennis ES, Wang M-B (2014b) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15:458. doi:https://doi.org/10.1186/s13059-014-0458-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lei M, Zhang H, Julian R, Tang K, Xie S, Zhu J-K (2015) Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc Natl Acad Sci USA:201502279

    Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H, Zhang S, Li Q, Luo R, Yu C, Yu J, Sun J, Zou X, Cao X, Xie X, Wang J, Wang W (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genom 13:300

    CAS  Article  Google Scholar 

  • Li Y, Kumar S, Qian W (2018) Active DNA demethylation: mechanism and role in plant development. Plant Cell Rep 37:77–85

    PubMed  Article  CAS  Google Scholar 

  • Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye C-Y, Tang S, Wang Y, Yang L, Wang J, Yin W, Xia X (2014) Single-base-resolution methylomes of populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15(Suppl 1):S9

    PubMed  PubMed Central  Article  Google Scholar 

  • Lippman Z, Gendrel A-V, Black M, Vaughn MW, Dedhia N, Richard McCombie W, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    CAS  PubMed  Article  Google Scholar 

  • Liu J, He Z (2020) Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci 11:1977

    Google Scholar 

  • Liu X, Yu C-W, Duan J, Luo M, Wang K, Tian G, Cui Y, Wu K (2012) HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol 158:119–129. https://doi.org/10.1104/pp.111.184275

    CAS  Article  PubMed  Google Scholar 

  • Liu C, Li H, Lin J, Wang Y, Xu X, Cheng Z-MM, Chang Y (2018) Genome-wide characterization of DNA demethylase genes and their association with salt response in pyrus. Genes 9:398

    CAS  PubMed Central  Article  Google Scholar 

  • Malinowska M, Nagy I, Wagemaker CA, Ruud AK, Svane SF, Thorup-Kristensen K, Jensen CS, Eriksen B, Krusell L, Jahoor A (2020) The cytosine methylation landscape of spring barley revealed by a new reduced representation bisulfite sequencing pipeline, WellMeth. Plant Genome 13:e20049

    CAS  PubMed  Article  Google Scholar 

  • Masoudi-Nejad A, Movahedi S, Jauregui R (2011) Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties. BMC Genom 12:214

    CAS  Article  Google Scholar 

  • Medvedeva Y, Khamis A, Kulakovskiy I, Ba-Alawi W, Bhuyan MS, Kawaji H, Lassmann T, Harbers M, Forrest A, Bajic V, consortium TF, (2014) Effects of cytosine methylation on transcription factor binding sites. BMC Genom 15:119

    Article  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-MarΓ­n MI, MartΓ­nez-MacΓ­as MI, Ariza RR, RoldΓ΅n-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 103:6853–6858

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Niederhuth CE, Schmitz RJ (2017) Putting DNA methylation in context: from genomes to gene expression in plants. Biochim Biophys Acta (BBA) Gene Regul Mech 1860:149–156

    CAS  Article  Google Scholar 

  • Ohr H, Bui AQ, Le BH, Fischer RL, Choi Y (2007) Identification of putative Arabidopsis DEMETER target genes by GeneChip analysis. Biochem Biophys Res Commun 364:856–860. https://doi.org/10.1016/j.bbrc.2007.10.092

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ortega-Galisteo A, Morales-Ruiz T, Ariza R, RoldΓ΅n-Arjona T (2008) Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of 7DNA methylation marks. Plant Mol Biol 67:671–681. doi:https://doi.org/10.1007/s11103-008-9346-0

    CAS  Article  PubMed  Google Scholar 

  • Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104:6752–6757. https://doi.org/10.1073/pnas.0701861104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ponferrada-Marin MI, RoldΓ΅n-Arjona T, Ariza RR (2009) ROS1 5-methylcytosine DNA glycosylase is a slow-turnover catalyst that initiates DNA demethylation in a distributive fashion. Nucleic Acids Res 37:4264–4274. doi:https://doi.org/10.1093/nar/gkp390

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Reinhold WC, Reimers MA, Maunakea AK, Kim S, Lababidi S, Scherf U, Shankavaram UT, Ziegler MS, Stewart C, Kouros-Mehr H, Cui H, Dolginow D, Scudiero DA, Pommier YG, Munroe DJ, Feinberg AP, Weinstein JN (2007) Detailed DNA methylation profiles of the E-cadherin promoter in the NCI-60 cancer cells. Mol Cancer Ther 6:391–403. https://doi.org/10.1158/1535-7163.mct-06-0609

    CAS  Article  PubMed  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006. doi:https://doi.org/10.1007/s00299-013-1414-5

    CAS  Article  PubMed  Google Scholar 

  • Schoft VK, Chumak N, Choi Y, Hannon M, Garcia-Aguilar M, Machlicova A, Slusarz L, Mosiolek M, Park J-S, Park GT, Fischer RL, Tamaru H (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042–8047. https://doi.org/10.1073/pnas.1105117108

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumann U, Lee J, Kazan K, Ayliffe M, Wang M-B (2017) DNA-demethylase regulated genes show methylation-independent spatiotemporal expression patterns. Front Plant Sci 8:1449

    PubMed  PubMed Central  Article  Google Scholar 

  • Schumann U, Lee JM, Smith NA, Zhong C, Zhu J-K, Dennis ES, Millar AA, Wang M-B (2019) DEMETER plays a role in DNA demethylation and disease response in somatic tissues of Arabidopsis. Epigenetics 14:1074–1087

    PubMed  PubMed Central  Article  Google Scholar 

  • Shafiq S, Zeb Q, Ali A, Sajjad Y, Nazir R, Widemann E, Liu L (2019) Lead, cadmium and zinc phytotoxicity alter DNA methylation levels to confer heavy metal tolerance in wheat. Int J Mol Sci 20:4676

    CAS  PubMed Central  Article  Google Scholar 

  • Shook MS, Richards EJ (2014) VIM proteins regulate transcription exclusively through the MET1 cytosine methylation pathway. Epigenetics 9:980–986

    PubMed  PubMed Central  Article  Google Scholar 

  • Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    CAS  PubMed  Article  Google Scholar 

  • Surdonja K, Eggert K, Hajirezaei M-R, Harshavardhan VT, Seiler C, Von Wirén N, Sreenivasulu N, Kuhlmann M (2017) Increase of DNA methylation at the HvCKX2. 1 promoter by terminal drought stress in barley. Epigenomes 1:9

    Article  CAS  Google Scholar 

  • Tang K (2020) Small RNA and DNA methylation in plants. Plant Small RNA:353–376

    Article  Google Scholar 

  • Tang K, Lang Z, Zhang H, Zhu J-K (2016) The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nat Plants 2:16169

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • To TK, Kim J-M, Matsui A, Kurihara Y, Morosawa T, Ishida J, Tanaka M, Endo T, Kakutani T, Toyoda T (2011) Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet 7:e1002055

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Van Oosten MJ, Bressan RA, Zhu J-K, Bohnert HJ, Chinnusamy V (2014) The role of the epigenome in gene expression control and the epimark changes in response to the environment. Crit Rev Plant Sci 33:64–87

    Article  CAS  Google Scholar 

  • Wang W-S, Pan Y-J, Zhao X-Q, Dwivedi D, Zhu L-H, Ali J, Fu B-Y, Li Z-K (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    CAS  PubMed  Article  Google Scholar 

  • Weinhofer I, Hehenberger E, Roszak P, Hennig L, Köhler C (2010) H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 6:e1001152

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • West PT, Li Q, Ji L, Eichten SR, Song J, Vaughn MW, Schmitz RJ, Springer NM (2014) Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS One 9:e105267

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Williams BP, Pignatta D, Henikoff S, Gehring M (2015) Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 11:e1005142

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Woo HR, Dittmer TA, Richards EJ (2008) Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet 4:e1000156

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zeng W, Huang H, Lin X, Zhu C, Ki Kosami, Huang C, Zhang H, Duan CG, Zhu JK, Miki D (2020) Roles of DEMETER in regulating DNA methylation in vegetative tissues and pathogen resistance. J Integr Plant Biol 63:691–706

    Article  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    CAS  PubMed  Article  Google Scholar 

  • Zhang H, Lang Z, Zhu J-K (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    CAS  PubMed  Article  Google Scholar 

  • Zheng X, Chen L, Li M, Lou Q, Xia H, Wang P, Li T, Liu H, Luo L (2013) Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PloS One 8:e80253

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, Li T, Luo L (2017) Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Konstantinos Bladenopoulos [IPBGR-ELGO Dimitra (exNAGREF)] for providing seed material. This work was funded by the project SYNERGASIA (Grant number AMYLO (SYN-22-878)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliki Kapazoglou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 509 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drosou, V., Kapazoglou, A., Letsiou, S. et al. Drought induces variation in the DNA methylation status of the barley HvDME promoter. J Plant Res 134, 1351–1362 (2021). https://doi.org/10.1007/s10265-021-01342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01342-z

Keywords

  • Barley
  • Bisulfite sequencing
  • DEMETER
  • DNA methylation
  • Drought stress
  • Epigenetic regulation
  • Transposable element