Skip to main content
Log in

Heat-induced down-regulation of photosystem II protects photosystem I in honeysuckle (Lonicera japonica)

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China which is often threatened by high temperature at midday during summer. Heat-induced effects on the photosynthetic apparatus in honeysuckle are associated with a depression of the photosystem II (PSII) photochemical efficiency. However, very limited information is available on regulation of photosynthetic electron flow in PSI photoprotection in heat-stressed honeysuckle. Simultaneous analyses of chlorophyll fluorescence and the change in absorbance of P700 showed that energy transformation and electron transfer activity in PSII decreased under heat stress, but the fraction of photo-oxidizable PSI (Pm) remained stable. With treatments at 38 and 42 °C, the photochemical electron transport in PSII was suppressed, whereas the cyclic electron flow (CEF) around PSI was induced. In addition, the levels of high energy state quenching (qE) and P700 oxidation increased significantly with increasing temperature. However, a decline of qE in antimycin A (AA)- or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated leaves after heat treatment was observed, while P700 oxidation decreased only in the presence of AA. The results indicate that heat-induced inhibition of PSII and induction of CEF cooperatively protect PSI from ROS damages through moderate down-regulation of photosynthetic electron flow from PSII to PSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tiss Org 39:7–12

    Article  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev SI (2016) High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth Res 130:251–266

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Martin M, Sabater B (2001) Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley. Plant Physiol 125:1450–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaux F, Peltier G, Johnson X (2015) A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow. Front Plant Sci 6:875

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yang J, Zhang M, Strasser RJ, Qiang S (2016) Classification and characteristics of heat tolerance in ageratina adenophora populations using fast chlorophyll a fluorescence rise O–J–I–P. Environ Experim Bot 122:126–140

    Article  CAS  Google Scholar 

  • Chen J, Chen S, He N, Wang Q, Zhao Y, Gao W, Guo F (2020) Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat Plants 6:570–580

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  CAS  PubMed  Google Scholar 

  • Essemine J, Xiao Y, Qu M, Mi H, Zhu XG (2017) Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress. J Plant Physiol 211:138–146

    Article  CAS  PubMed  Google Scholar 

  • Golding AJ, Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK (2019) Tissue specific disruption of photosynthetic electron transport rate in pigeonpea (Cajanus cajan L.) under elevated temperature. Plant Signal Behav 14:1601952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33

    Article  CAS  Google Scholar 

  • Havaux M (1996) Short-term responses of photosystem I to heat stress. Photosynth Res 47:85–97

    Article  CAS  PubMed  Google Scholar 

  • Hertle A, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Yang YJ, Hu H, Cao KF, Zhang SB (2016a) Sustained diurnal stimulation of cyclic electron flow in two tropical tree species Erythrophleum guineense and Khaya ivorensis. Front Plant Sci 7:383

    Article  Google Scholar 

  • Huang W, Yang YJ, Hu H, Zhang SB (2016b) Moderate photoinhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves. Front Plant Sci 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Järvi S, Suorsa M, Tadini L, Ivanauskaite A, Rantala S, Allahverdiyeva Y, D. L, Aro EM, (2016) Thylakoid-bound FtsH proteins facilitate proper biosynthesis of photosystem I. Plant Physiol 171:1333–1343

    PubMed  PubMed Central  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389

    Article  CAS  PubMed  Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Kang SJ, Park HS, Koo HJ, Park JY, Lee DY, Kang KB, Han SI, Sung SH, Yang TJ (2018) The complete chloroplast genome sequence of Korean Lonicera japonica and intra-species diversity. Mitochondrial DNA B 3:941–942

    Article  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes 1:27–35

    Google Scholar 

  • Kono M, Terashima I (2016) Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant Cell Physiol 57:1405–1414

    CAS  PubMed  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Vernotte C, Briantais JM (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. BBA Bioenerg 679:116–124

    Article  CAS  Google Scholar 

  • Lascano HR, Casano LM, Martin M, Sabater B (2003) The activity of the chloroplastic Ndh complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiol 132:256–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Cheng L, Gao H, Jiang C, Peng T (2009a) Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J Plant Physiol 166:1607–1615

    Article  CAS  PubMed  Google Scholar 

  • Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009b) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792

    Article  CAS  PubMed  Google Scholar 

  • Li WD, Hu X, Liu JK, Jiang GM, Xing D (2011) Chromosome doubling can increase heat tolerance in lonicera japonica as indicated by chlorophyll fluorescence imaging. Biol Plant 55:279–284

    Article  CAS  Google Scholar 

  • Li Q, Yao ZJ, Mi H (2016) Alleviation of photoinhibition by co-ordination of chlororespiration and cyclic electron flow mediated by NDH under heat stressed condition in tobacco. Front Plant Sci 7:285

    PubMed  PubMed Central  Google Scholar 

  • Lin CS, Chen JJ, Huang YT, Chan MT, Daniell H, Chang WJ, Hsu CT, Liao DC, Wu FH, Lin SY, Liao CF, Deyholos MK, Wong GK, Albert VA, Chou ML, Chen CY, Shih MC (2015) The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Sci Rep 5:9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu T, Shi JW, Sun ZP, Qi MF, Liu YF, Li TL (2017) Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. J Zhejiang Univ-Sci B 18:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Yin Z, Lu T, Yang X, Wang F, Qi M, Li T, Liu Y (2020) Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature. Plant Sci 292:110387

    Article  CAS  PubMed  Google Scholar 

  • Lucker B, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459

    Article  CAS  PubMed  Google Scholar 

  • Miyake C (2020) Molecular mechanism of oxidation of P700 and suppression of ROS production in photosystem I in response to electron-sink limitations in C3 plants. Antioxid 9:230

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  CAS  PubMed  Google Scholar 

  • Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Notes 1:21–24

    Google Scholar 

  • Rajagopal S, Bukhov N, Carpentier R (2002) Changes in the structure of chlorophyll-protein complexes and excitation energy transfer during photoinhibitory treatment of isolated photosystem I submembrane particles. J Photochem Photobiol B 67:194–200

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasek TW, Strain BR (1990) Implications of atmospheric CO2 enrichment and climatic change for the geographical distribution of two introduced vines in the USA. Clim Change 16:31–51

    Article  Google Scholar 

  • Sejima T, Takagi D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Shang X, Pan H, Li M, Miao X, Ding H (2011) Lonicera japonica thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 138:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2020) Regulation of photosynthesis by cyclic electron transport around photosystem I. Adv Bot Res 96:177–204

    Article  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimakawa G, Shaku K, Miyake C (2016) Oxidation of P700 in photosystem I is essential for the growth of cyanobacteria. Plant Physiol 172:1443–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    Article  CAS  PubMed  Google Scholar 

  • Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I (1997) The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition. Photosynth Res 53:55–63

    Article  CAS  Google Scholar 

  • Srivastava A, Guissé B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem ii of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. BBA Bioenerg 1320:95–106

    Article  CAS  Google Scholar 

  • Storti M, Segalla A, Mellon M, Alboresi A, Morosinotto T (2020) Regulation of electron transport is essential for photosystem I stability and plant growth. New Phytol 228:1316–1326

    Article  CAS  PubMed  Google Scholar 

  • Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci U S A 112:5539–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strand DD, Fisher N, Davis GA, Kramer DM (2016) Redox regulation of the antimycin a sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids. BBA Bioenerg 1857:1–6

    Article  CAS  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed) Photosynthesis: from light to biosphere. KAP Press, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis Press, London, pp 445–483

    Google Scholar 

  • Sun Y, Geng Q, Du Y, Yang X, Zhai H (2016a) Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Sci 256:65–71

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Liu X, Zhai H, Gao H, Yao Y, Du Y (2016b) Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves. Acta Physiol Plant 38:232

    Article  CAS  Google Scholar 

  • Suorsa M, Rossi F, Tadini L, Labs M, Colombo M, Jahns P, Kater MM, Leister D, Finazzi G, Aro EM, Barbato R (2016) PGR5-PGRL1-dependent cyclic electron transport modulates linear electron transport rate in Arabidopsis thaliana. Mol Plant 9:271–288

    Article  CAS  PubMed  Google Scholar 

  • Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C (2017) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant 161:56–74

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Clowez S, Wollman F, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, West DW (1980) The use of evan’s blue stain to test the survival of plant cells after exposure to high salt and high osmotic pressure. J Exp Bot 2:571–576

    Article  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tikkanen M, Mekala NR, Aro EM (2014) Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. BBA Bioenerg 1837:210–215

    Article  CAS  Google Scholar 

  • Tikkanen M, Rantala S, Aro EM (2015) Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Front Plant Sci 6:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth SZ, Schansker G, Garab G, Strasser RJ (2007a) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. BBA-Bioenergetics 1767:295–305

    Article  CAS  PubMed  Google Scholar 

  • Toth SZ, Schansker G, Strasser RJ (2007b) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    Article  CAS  PubMed  Google Scholar 

  • Toth SZ, Oukarroum A, Schansker G (2020) Probing the photosynthetic apparatus noninvasively in the laboratory of Reto Strasser in the countryside of Geneva between 2001 and 2009. Photosynthetica 58:560–572

    Article  CAS  Google Scholar 

  • Wada S, Takagi D, Miyake C, Makino A, Suzuki Y (2019) Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, P700, under drought and high temperatures in rice. Int J Mol Sci 20:2068

    Article  CAS  PubMed Central  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Clifford MN, Sharp P (2008) Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absorption in cultured Caco-2 cells. Food Chem 108:369–373

    Article  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59

    Article  CAS  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Ann Rev Plant Biol 67:81–106

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Zhao S (2013) Characterization of photosynthetic electron transport chain in bioenergy crop Jerusalem artichoke (Helianthus tuberosus L.) under heat stress for sustainable cultivation. Ind Crops Prod 50:809–815

    Article  CAS  Google Scholar 

  • Yan K, Wu C, Zhang L, Chen X (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica thumb.) under salt stress. Fron Plant Sci 6:227

    Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Yang C, Gao HY, Zhang LT, Fan XL, Liu MJ (2014) The higher sensitivity of PSI to ROS results in lower chilling-light tolerance of photosystems in young leaves of cucumber. J Photochem Photobiol B Biol 137:127–134

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. BLX201803) and National Natural Science Foundation of China (No. 32001348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Feng, X., Wang, H. et al. Heat-induced down-regulation of photosystem II protects photosystem I in honeysuckle (Lonicera japonica). J Plant Res 134, 1311–1321 (2021). https://doi.org/10.1007/s10265-021-01336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01336-x

Keywords

Navigation