Skip to main content

Enhancement of salt tolerance in corn using Azospirillum brasilense: an approach on antioxidant systems

Abstract

Salinity has become one of the major factors limiting agricultural production. In this regard, different cost-effective management strategies such as the use of plant growth-promoting bacteria (PGPB) as inoculants to alleviate salt-stress conditions and minimize plant productivity losses have been used in agricultural systems. The aim of this study was to characterize induced antioxidant responses in corn through inoculation with Azospirillum brasilense and examine the relationship between these responses and the acquired salt-stress tolerance. Treatments were performed by combining sodium chloride (0 and 100 mM NaCl) through irrigation water with absence and presence of A. brasilense inoculation. The experiment was performed in a completely randomized design with four replications. Lipid peroxidation (malondialdehyde [MDA]), and nitrogen (N), sodium (Na+) and potassium (K+) contents, as well as dry biomass, glycine betaine, and antioxidant enzymes activities such as of superoxide dismutase (SOD, EC 1. 15. 1. 1), glutathione reductase (GR, EC 1. 6. 4. 2), guaiacol peroxidase (GPOX, EC 1. 11. 1. 7), and glutathione peroxidase (GSH-PX, EC 1. 11. 1. 9) were determined. Overall results indicated that plants treated with 100 mM NaCl showed the most pronounced salt-stress damages with consequent increase in MDA content. However, inoculated plants showed an enhanced capacity to withstand or avoid salt-stress damages. These results could be attributed, at least in part, to the increased activity of antioxidant enzymes. Our results suggest that A. brasilense may confer tolerance to salt stress in corn plants enhancing antioxidant responses, primarily by the enzymes GSH-PX and GPOX, and the osmolyte glycine betaine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Ahmed M, Rauf M, Mukhtar Z, Saeed NA (2017) Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environ Sci Pollut Res 24:26983–26987

    Article  Google Scholar 

  • Alves RC, Medeiros AS, Nicolau MCM, Neto AP, Oliveira FA, Lima LW, Tezotto T, Gratão PL (2018) The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiol Biochem 127:366–379

    CAS  PubMed  Article  Google Scholar 

  • Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles activity of gluthatione S tranferase, gluthatione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Planta 120:421–433

    CAS  Article  Google Scholar 

  • Barbosa JC, Junior WM (2015) Experimentação agronômica and AgroEstat: Sistemas para Análises Estatísticas de Ensaios Agronômicos. FCAV/UNESP, Jaboticabal, p 396

    Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by anindonle-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    CAS  PubMed  Article  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non- tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    CAS  PubMed  Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Carvalho RF, Monteiro CC, Caetano AC, Dourado MN, Gratão PL, Haddad CKB, Peres LEP, Azevedo RA (2013) Leaf senescence in tomato mutants as affected by irradiance and phytohormones. Biol Planta 57:749–757

    CAS  Article  Google Scholar 

  • Chen THH, Murata N (2008) Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    CAS  PubMed  Article  Google Scholar 

  • DeBruin JL, Schussler JR, Mo H, Cooper M (2017) Grain Yield and Nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwet. Crop Sci 57:1431

    Article  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants principles and perspectives, vol 2. Oxford University Press, Sunderland, p 400

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    CAS  PubMed  Article  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KHM (2015) Salt stress in maize: effects resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    CAS  Article  Google Scholar 

  • Farooq MA, Niazi AK, Ullah S (2019) Acquiring control: the evolution of ROS-induced and redox signaling pathways in plant-stress responses. Plant Physiol Biochem 141:353–369

    CAS  PubMed  Article  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090

    CAS  PubMed  Article  Google Scholar 

  • Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7:153

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Fukami J, Osa CI, Ollero FJ, Megías M, Hungria M (2018a) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339

    CAS  PubMed  Article  Google Scholar 

  • Fukami J, Ollero AJ, Osa CI, Valderrama-Fernandez R, Nogueira MA, Megías M, Hungria M (2018b) Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch Microbiol 200:1191–1203

    CAS  PubMed  Article  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Exp 8:73

    Article  CAS  Google Scholar 

  • Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018) Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol (Stuttg) 20:729–736

    CAS  Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide Dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Giri J (2011) Glycine betaine and abiotic stress tolerance in plants. Plant Signal Behav 6:1746–1751

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gratão PL, Monteiro CC, Carvalho RF, Tezzoto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96

    PubMed  Article  CAS  Google Scholar 

  • Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peter LJ, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816

    PubMed  Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Article  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth-promoting rhizobacteria: effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1:210–215

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    CAS  PubMed  Article  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    CAS  PubMed  Article  Google Scholar 

  • Hungria M (2011) Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo, vol 325. Embrapa Soja, Londrina, p 36

    Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    PubMed  PubMed Central  Article  Google Scholar 

  • Kuhn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 33:154–172

    CAS  PubMed  Article  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant–microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    CAS  PubMed  Article  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    PubMed  PubMed Central  Article  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophy Res Commun 495:286–291

    CAS  Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Article  Google Scholar 

  • Lim JH, Park HJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprouts. Food Chem 135:1065–1070

    CAS  PubMed  Article  Google Scholar 

  • Miyazawa M, Pavan MA, Muraoka T, Carmo CAF, de Do S, de Mello WJ (1999) Análises químicas de tecido vegetal. In: da Silva FC (ed) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Comunicação para Transferência de Tecnologia, Rio de Janeiro, pp 171–223

    Google Scholar 

  • Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezoto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320

    CAS  Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Article  Google Scholar 

  • Pii Y, Aldrighetti A, Valentinuzzi F, Mimmo T, Cesco S (2019) Azospirillum brasilense inoculation counteracts the induction of nitrate uptake in maize plants. J Exp Bot 70:1313–1324

    CAS  PubMed  Article  Google Scholar 

  • Radhakrishnan R, Baek KH (2017) Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. Plant Physiol Biochem 116:116–126

    CAS  PubMed  Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidant defense mechanism in plants under stressful conditions. J Bot 2012:1–26 (ID 217037)

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    CAS  PubMed  Article  Google Scholar 

  • Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    CAS  Article  Google Scholar 

  • Wang QY, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-amnocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    CAS  PubMed  Article  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6:215–225

    Article  Google Scholar 

  • Xiong X, Liu N, Wei Y, Bi Y, Luo J, Xu R, Zhou J, Zhang Y (2018) Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfafa cultivars. Plant Physiol Biochem 132:434–444

    CAS  PubMed  Article  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667

    PubMed  Google Scholar 

  • Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, Li LC, Xu SC, Ma YZ (2013) Two wheat gluthathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. Plos One 8:73989

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (MVC) for the scholarship granted (Finance Code 001). PLG also thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research fellowship (Grant nº 314380/2018-3) - Brazil. This work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Grant n° 2017/04787-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Lupino Gratão.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Checchio, M.V., de Cássia Alves, R., de Oliveira, K.R. et al. Enhancement of salt tolerance in corn using Azospirillum brasilense: an approach on antioxidant systems. J Plant Res 134, 1279–1289 (2021). https://doi.org/10.1007/s10265-021-01332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01332-1

Keywords

  • Alleviate
  • Antioxidant enzymes
  • Growth-promoting bacteria
  • Oxidative stress
  • Salinity