Skip to main content
Log in

Influence of different types of explants in chickpea regeneration using thidiazuron seed-priming

Journal of Plant Research Aims and scope Submit manuscript

Abstract

A comparative regeneration of three types of explants prepared from axillary meristems, plumular apices and hypocotyls of chickpea (Cicer arietinum) was carried out using four thidiazuron (TDZ) treatment methods. The first and third ones included the short-term 20 μM TDZ pre-treatment for all three explant types followed by non-supplementation or supplementation of TDZ (4 μM) into the shoot induction medium (SIM), while the second and fourth ones lacked TDZ pre-treatment followed by non-addition or addition of 4 μM TDZ in the SIM. Axillary meristem explants produced the best results with seed pre-treatment using 20 μM TDZ without TDZ in SIM and showed the highest rate of regeneration efficiency (71.33 ± 1.5%) after 20 days. Concurrently, plumular apex explants from TDZ-primed seeds was ranked second, exhibiting a regeneration percentage of 54.33 ± 2.3% in SIM without supplementation of TDZ, whereas explants from hypocotyls generated from seeds subjected to any of the TDZ treatments were not regenerated on any SIMs after 20 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Adil M, Ren X, Kang DI, Thi LT, Jeong BR (2018) Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol Biol Rep 45:1919–1927

    Article  CAS  Google Scholar 

  • Ahmad N, Faisal M, Anis M (2013) Role of PGR on in vitro shoot propagation in Cyamopsis tetragonoloba L. (Taub.): a drought tolerant grain legume. Rend Fis Acc Lincei 24:7–12

    Article  Google Scholar 

  • Ahmad A, Ahmad N, Anis M, Alatar AA, Abdel-salam EM, Qahtan AA, Faisal M (2021) Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell Tissue Organ Cult 144:449–462

    Article  CAS  Google Scholar 

  • Bakshi S, Roy NK, Sahoo L (2012) Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tissue Organ Cult 110:77–91

    Article  CAS  Google Scholar 

  • Barik DP, Naik SK, Mudgal A, Chand PK (2007) Rapid plant regeneration through in vitro axillary shoot proliferation of butterfly pea (Clitoria ternatea L.)—a twinning legume. Vitro Cell Dev Biol Plant 43:144–148

    Article  Google Scholar 

  • Chakrabarty D, Trivedi PK, Shri M, Misra P, Asif MH, Dubey S, Kumar S, Rai A, Tiwari M, Shukla D, Pandey A, Nigam D, Tripathi RD, Tuli R (2010) Differential transcriptional expression following thidiazuron induced callus differentiation developmental shifts in rice. Plant Biol 12:46–59

    Article  CAS  Google Scholar 

  • Chakraborti D, Sarkar A, Das S (2006) Efficient and rapid in vitro plant regeneration system for Indian cultivars of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 86:117–123

    Article  Google Scholar 

  • Coram TE, Pang ECK (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666

    Article  CAS  Google Scholar 

  • Davey JE, van Staden J (1979) Cytokinin activity in Lupinus albus: IV. Distribution in seeds. Plant Physiol 63:873–877

    Article  CAS  Google Scholar 

  • Dey M, Bakshi S, Galiba G, Sahoo L, Panda SK (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech 2:233–240

    Article  Google Scholar 

  • Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult 80:187–190

    Article  CAS  Google Scholar 

  • Ganguly S, Ghosh G, Ghosh S, Purohit A, Chaudhuri RK, Das S, Chakraborti D (2020) Plumular meristem transformation system for chickpea: an efficient method to overcome recalcitrant tissue culture responses. Plant Cell Tissue Organ Cult 142:493–504

    Article  CAS  Google Scholar 

  • Gu H, Jia Y, Wang X, Chen Q, Shi S, Ma L, Zhang J, Zhang H, Ma H (2012) Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Mol Biol Rep 39:3565–3572

    Article  CAS  Google Scholar 

  • Gubiš J, Lajchová Z, Faragó J, Jureková Z (2003) Effect of genotype and explant type on shoot regeneration in tomato (Lycopersicon esculentum Mill.) in vitro. Czech J Genet Plant Breed 39:9–14

    Article  Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000

    Article  CAS  Google Scholar 

  • Hewelt A, Prinsen E, Schell J, Van Onckelen H, Schmuelling T (1994) Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J 6:879–891

    Article  CAS  Google Scholar 

  • Hnatuszko-Konka K, Kowalczyk T, Gerszberg A, Glińska S, Grzegorczyk-Karolak I (2019) Regeneration of Phaseolus vulgaris from epicotyls and hypocotyls via direct organogenesis. Sci Rep 9:6248

    Article  Google Scholar 

  • Javed SB, Alatar AA, Anis M, El-Sheikh AM (2019) In vitro regeneration of coral tree from three different explants using thidiazuron. HortTechnology 29:946–951

    Article  CAS  Google Scholar 

  • Jayanand B, Sudarsanam SKK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro germinated seedlings. Vitro Cell Dev Biol Plant 39:171–179

    Article  Google Scholar 

  • Jiménez-Díaz RM, Castillo P, del Mar J-G, Landa BB, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Prot 73:16–27

    Article  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur PM, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  Google Scholar 

  • Kiran G, Kaviraj CP, Jogeswar G, Kishor KVK, Rao S (2005) Direct and high frequency somatic embryogenesis and plant regeneration from hopocotyls of chickpea (Cicer arietinum L.), a grain legume. Curr Sci 89:1012–1018

    Google Scholar 

  • Kumari P, Singh S, Yadav S, Tran LSP (2018) Pretreatment of seeds with thidiazuron delimits its negative effects on explants and promotes regeneration in chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 133:103–114

    Article  CAS  Google Scholar 

  • Letham DS (1994) Cytokinins as phytohormones: sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DWS, Mok MC (eds) Cytokinins chemistry, activity and function. CRC Press, Boca Raton, pp 57–80

    Google Scholar 

  • Mik V, Szüčová L, Šmehilová M et al (2011) N9-substituted derivatives of kinetin: effective anti-senescence agents. Phytochemistry 72:821–883

    Article  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyl transferases and tRNA isopentenyl transferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–02183

    Article  CAS  Google Scholar 

  • Nisler J (2018) TDZ: mode of action, use and potential in agriculture. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 37–59

    Chapter  Google Scholar 

  • Nowakowska K, Pacholczak A, Tepper W (2019) The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba.’ Rend Fis Acc Lincei 30:197–205

    Article  Google Scholar 

  • Ochatt S, Conreux C, Smýkalová I, Smýkal P, Mikić A (2016) Developing biotechnology tools for ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Plant Cell Tissue Organ Cult 127:637–648

    Article  Google Scholar 

  • Otroshy M, Khalili Z, Ebrahimi MA, Nekoui MK, Moradi K (2013) Effect of growth regulators and explant on plant regeneration of Solanum lycopersicum L. var. cerasiforme. Russ Agricult Sci 39:226–235

    Article  Google Scholar 

  • Sharma VK, Hansch R, Mendel RR, Schulze J (2005) Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long term retention of morphogenecity using meristematic shoot segments. Plant Breed 124:242–246

    Article  CAS  Google Scholar 

  • Siddique I, Anis M (2007) In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.)—a medicinal plant. Acta Physiol Plant 29:333–338

    Article  Google Scholar 

  • Singh V, Chauhan NS, Singh M, Idris A, Madanala R, Pande V, Mohanty CS (2014) Establishment of an efficient and rapid method of multiple shoot regeneration and a comparative phenolics profile in in vitro and greenhouse-grown plants of Psophocarpus tetragonolobus (L.) DC. Plant Signal Behav 9:e970443

    Article  Google Scholar 

  • Synkova H, Van Loren K, Pospisilova J, Valcke R (1999) Photosynthesis of transgenic pssu-ipt tobacco. J Plant Physiol 155:173–182

    Article  CAS  Google Scholar 

  • Thu NBA, Hoang XLT, Truc MT, Sulieman S, Thao NP, Tran LSP (2017) Cytokinin signaling in plant response to abiotic stresses. In: Pandey G (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley, pp 71–100

    Chapter  Google Scholar 

  • Visarada KBRS, Sailaja M, Sarma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol Plant 45:495–502

    Article  CAS  Google Scholar 

  • Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A, Zhang J, Shi S, Ma H (2012) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39:8147–8158

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Agriculture Research Station, Durgapura, Jaipur, India for the supply of chickpea varieties. We are thankful to Dr. Hemant R. Kushwaha, School of Biotechnology, Jawaharlal Nehru University, India, for helping in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saurabh Yadav or Lam-Son Phan Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Singh, S., Yadav, S. et al. Influence of different types of explants in chickpea regeneration using thidiazuron seed-priming. J Plant Res 134, 1149–1154 (2021). https://doi.org/10.1007/s10265-021-01312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01312-5

Keywords

Navigation