Skip to main content
Log in

Symmetry and its transition in phyllotaxis

  • JPR Symposium
  • Beyond Fibonacci Patterns and the Golden Angle: Phyllotactic Variations and their Cellular Origin
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Symmetry is an important component of geometric beauty and regularity in both natural and cultural scenes. Plants also display various geometric patterns with some kinds of symmetry, of which the most notable example is the arrangement of leaves around the stem, i.e., phyllotaxis. In phyllotaxis, reflection symmetry, rotation symmetry, translation symmetry, corkscrew symmetry, and/or glide reflection symmetry can be seen. These phyllotactic symmetries can be dealt with the group theory. In this review, we introduce classification of phyllotactic symmetries according to the group theory and enumerate all types of phyllotaxis, not only major ones such as spiral and decussate but also minor ones such as orixate and semi-decussate, with their symmetry groups. Next, based on the mathematical model studies of phyllotactic pattern formation, we discuss transitions between phyllotaxis types different in the symmetry class with a focus on the transition into one of the least symmetric phyllotaxis, orixate, as a representative of the symmetry-breaking process. By changes of parameters of the mathematical model, the phyllotactic pattern generated can suddenly switch its symmetry class, which is not constrained by the group-subgroup relationship of symmetry. The symmetry-breaking path to orixate phyllotaxis is also accompanied by dynamic changes of the symmetry class. The viewpoint of symmetry brings a better understanding of the variety of phyllotaxis and its transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Modified from Yonekura et al. (2019)

Fig. 6

Similar content being viewed by others

References

  • Adler I (1974) A model of compact pressure in phyllotaxis. J Theor Biol 45:1–79

    CAS  PubMed  Google Scholar 

  • Baglivo JA, Graver JE (1983) Incidence and symmetry in design and architecture. Cambridge University Press, Cambridge

    Google Scholar 

  • Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G, Chambrier P, Rozier F, Mirabet V, Legrand J, Lainé S, Thévenon E, Farcot E, Cellier C, Das P, Bishopp A, Dumas R, Parcy F, Helariutta Y, Boudaoud A, Godin C, Traas J, Guédon Y, Vernoux T (2014) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–421

    CAS  PubMed  Google Scholar 

  • Braun A (1831) Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blattstellung überhaupt. Nova Acta Ph Med Acad Cesar Leop Carol Nat Curiosorum 15:195–402 (in German)

    Google Scholar 

  • Charlton WA (1994) The rotated-lamina syndrome. IV. Relationships between rotation and symmetry in Magnolia and other cases. Can J Bot 72:25–38

    Google Scholar 

  • Church AH (1904) The principles of phyllotaxis. Ann Bot 18:227–243

    Google Scholar 

  • Dengler NG (1999) Anisophylly and dorsiventral shoot symmetry. Int J Plant Sci 160:S67–S80

    CAS  PubMed  Google Scholar 

  • Douady S, Couder Y (1992) Phyllotaxis as a physical self-organized growth process. Phys Rev Lett 68:2098–2101

    CAS  PubMed  Google Scholar 

  • Douady S, Couder Y (1996a) Phyllotaxis as a dynamical self organizing process. Part I: The spiral modes resulting from time-periodic iterations. J Theor Biol 178:255–274

    Google Scholar 

  • Douady S, Couder Y (1996b) Phyllotaxis as a dynamical self organizing process. Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol 178:275–294

    Google Scholar 

  • Douady S, Couder Y (1996c) Phyllotaxis as a dynamical self organizing process. Part III: the simulations of transient regimes of ontogeny. J Theor Biol 178:295–312

    Google Scholar 

  • Enquist M, Arak A (1994) Symmetry, beauty and evolution. Nature 372:169–172

    CAS  PubMed  Google Scholar 

  • Finnerty JR (2003) The origins of axial patterning in the metazoa: how old is bilateral symmetry? Int J Dev Biol 47:523–529

    PubMed  Google Scholar 

  • Fujita T (1948) Plant organ formation. Kawade Shobo, Tokyo (in Japanese)

    Google Scholar 

  • Fukuda Y (1988) Phyllotaxis in two species of Rubia, R. akane and R. sikkimensis. Bot Mag Tokyo 101:25–38

    Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034

    CAS  PubMed  Google Scholar 

  • Gola EM, Banasiak A (2016) Diversity of phyllotaxis in land plants in reference to the shoot apical meristem structure. Acta Soc Bot Pol 85:3529

    Google Scholar 

  • Golubitsky M, Melbourne I (1998) A symmetry classification of columns. In: Sarhangi R (ed) Bridges: mathematical connections in art, music, and science; conference proceedings 19988. Bridges Conference, Winfield, pp 209–223

    Google Scholar 

  • Golubitsky M, Stewart I (2002) The symmetry perspective: from equilibrium to chaos in phase space and physical space, Progress in Mathematics 200. Birkhäuser, Basel

    Google Scholar 

  • Gray A (1887) The elements of botany for beginners and for schools. American Book Company, New York

    Google Scholar 

  • Green PB (1985) Surface of the shoot apex: a reinforcement-field theory for phyllotaxis. J Cell Sci Suppl 2:181–201

    CAS  PubMed  Google Scholar 

  • Green PB (1992) Pattern formation in shoots: a likely role for minimal energy configurations of the tunica. Int J Plant Sci 153:S59–S75

    Google Scholar 

  • Hargittai I (1992) Fivefold symmetry. World Scientific Publishing, Singapore

    Google Scholar 

  • Hargittai M, Hargittai I (1994) Symmetry: a unifying concept. Shelter Publications, Bolinas

    Google Scholar 

  • Hofmeister W (1868) Allgemeine Morphologie des Gewachse. Engelmann, Leipzig (in German)

    Google Scholar 

  • Itoh J, Hibara K, Kojima M, Sakakibara H, Nagato Y (2012) Rice DECUSSATE controls phyllotaxy by affecting the cytokinin signaling pathway. Plant J 72:869–881

    CAS  PubMed  Google Scholar 

  • Jean RV (1986) A basic theorem on and a fundamental approach to pattern formation on plants. Math Biosci 79:127–154

    Google Scholar 

  • Jean RV (1988a) Number-theoretic properties of two-dimensional lattices. J Num Theor 29:206–223

    Google Scholar 

  • Jean RV (1988b) Phyllotactic pattern generation: a conceptual model. Ann Bot 61:293–303

    Google Scholar 

  • Jean RV (1994) Phyllotaxis: a systemic study in plant morphogenesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jönsson H, Heisler M, Shapiro B, Meyerowitz E, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. PNAS 103:1633–1638

    PubMed  Google Scholar 

  • Kirchoff BK (1986) Inflorescence structure and development in the Zingiberales: Thalia geniculata (Marantaceae). Can J Bot 64:859–864

    Google Scholar 

  • Kirchoff BK, Rutishauser R (1990) The phyllotaxy of Costus (Costaceae). Bot Gaz 151:88–105

    Google Scholar 

  • Koriba K (1914) Mechanisch-physiologische Studien uber die Drehung der Spiranthes-Ahre. J Sci Imp Univ Tokyo 36:1–179 (in German)

    Google Scholar 

  • Kumazawa M (1979) Plant Organology. Shokabo, Tokyo (in Japanese)

    Google Scholar 

  • Kwiatkowska D (1995) Ontogenetic changes of phyllotaxis in Anagallis arvensis L. Acta Soc Bot Pol 64:319–325

    Google Scholar 

  • Kwiatkowska D (1999) Formation of pseudowhorls in Peperomia verticillata (L.) A. Dietr. shoots exhibiting various phyllotactic patterns. Ann Bot 83:675–685

    Google Scholar 

  • Levitov LS (1991) Phyllotaxis of flux lattices in layered superconductors. Phys Rev Lett 66:224–227

    CAS  PubMed  Google Scholar 

  • Maekawa F (1948) Folia orixata, a new type of phyllotaxis and its significance to phyllotaxis evolution. Bot Mag Tokyo 61:7–10 (in Japanese with English summary)

    Google Scholar 

  • Marc J, Hackett WP (1991) Gibberellin-induced reorganization of spatial relationships of emerging leaf primordia at the shoot apical meristem in Hedera helix L. Planta 185:171–178

    CAS  PubMed  Google Scholar 

  • Martinez CC, Koenig D, Chitwood DH, Sinha NR (2016) A sister of PIN1 gene in tomato (Solanum lycopersicum) defines leaf and flower organ initiation patterns by maintaining epidermal auxin flux. Dev Biol 419:85–98

    CAS  PubMed  Google Scholar 

  • Meicenheimer RD (1998) Decussate to spiral transitions in phyllotaxis. In: Jean RV, Barabé D (eds) Symmetry in plants. World Scientific Publishing, Singapore, pp 125–143

    Google Scholar 

  • Meinhardt H, Koch AJ, Bernasconi G (1998) Models of pattern formation applied to plant development. In: Jean RV, Barabé D (eds) Symmetry in plants. World Scientific Publishing, Singapore, pp 723–758

    Google Scholar 

  • Mirabet V, Besnard F, Vernoux T, Boudaoud A (2012) Noise and robustness in phyllotaxis. PLOS Comput Biol 8:e1002389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchison G (1977) Phyllotaxis and the Fibonacci series. Science 196:270–275

    CAS  PubMed  Google Scholar 

  • Mündermann L, Erasmus Y, Lane B, Coen E, Prusinkiewicz P (2005) Quantitative modeling of Arabidopsis development. Plant Phys 139:960–968

    Google Scholar 

  • Perrett DI, Burt M, Penton-Voak IS, Lee KJ, Rowland DA, Edwards R (1999) Symmetry and human facial attractiveness. Evol Hum Behav 20:295–307

    Google Scholar 

  • Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. PNAS 110:1107–1112

    CAS  PubMed  Google Scholar 

  • Prasad K, Grigg SP, Barkoulas M, Yadav RK, Sanchez-Perez GF, Pinon V, Blilou I, Hofhuis H, Dhonukshe P, Galinha C, Mähönen AP, Muller WH, Raman S, Verkleij AJ, Snel B, Reddy GV, Tsiantis M, Scheres B (2011) Arabidopsis PLETHORA transcription factors control phyllotaxis. Curr Biol 21:1123–1128

    CAS  PubMed  Google Scholar 

  • Preston JC, Hileman LC (2009) Developmental genetics of floral symmetry evolution. Trend Plant Sci 14:147–154

    CAS  Google Scholar 

  • Rauh W (1938) Gentiana terglouensis Hacquet, ein neuer Fall von schiefer Wirtelbildung. Ber Deutsch Bot Ges 56:267–273 (in German)

    Google Scholar 

  • Refahi Y, Brunoud G, Farcot E, Jean-Marie A, Pulkkinen M, Vernoux T, Godin C (2016) A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. Elife 5:e14093

    PubMed  PubMed Central  Google Scholar 

  • Reinhardt D (2005) Regulation of phyllotaxis. Int J Dev Biol 49:539–546

    CAS  PubMed  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Phyllotaxis in higher plants. In: MacManus MT, Veit BE (eds) Meristematic tissues in plant growth and development. CRC Press, Boca Raton, pp 172–212

    Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeir C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    CAS  PubMed  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2005) Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 132:15–26

    CAS  PubMed  Google Scholar 

  • Roberts DW (1977) A contact pressure model for semi-decussate and related phyllotaxis. J Theor Biol 68:583–597

    CAS  PubMed  Google Scholar 

  • Rosenthal JE, Murphy GM (1936) Group theory and the vibrations of polyatomic molecules. Rev Mod Phys 8:317–346

    CAS  Google Scholar 

  • Rutishauser R (1998) Plastochrone ratio and leaf arc as parameters of a quantitative phyllotaxis analysis in vascular plants. In: Jean RV, Barabé D (eds) Symmetry in Plants. World Scientific Publishing, pp 171–212

  • Rutishauser R, Peisl P (2001) Phyllotaxy. Encyclopedia of life sciences. John Wiley and Sons, Chichester. https://doi.org/10.1038/npg.els.0002057

    Chapter  Google Scholar 

  • Schimper CF (1836) Geometrische Anordnung der um eine Axeperiferischen Blattgebilde. Verhandl Schweiz Naturf Ges 21:113–117 (in German)

    Google Scholar 

  • Shi B, Vernoux T (2019) Patterning at the shoot apical meristem and phyllotaxis. Curr Top Dev Biol 131:81–107

    PubMed  Google Scholar 

  • Smith RS, Khulemeier C, Prusinkiewicz P (2006a) Inhibition fields for phyllotactic pattern formation: a simulation study. Can J Bot 84:1635–1639

    Google Scholar 

  • Smith RS, Guyomarch S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006b) A plausible model of phyllotaxis. PNAS 103:1301–1306

    CAS  PubMed  Google Scholar 

  • Snow GRS (1951a) Experiments on bijugate apices. Phil Trans Roy Soc B 235:291–310

    CAS  Google Scholar 

  • Snow M (1951b) Experiments on spirodistichous shoot apices. I. Phil Trans Roy Soc B 235:131–162

    CAS  Google Scholar 

  • Snow R (1952) On the shoot apex and phyllotaxis of Costus. New Phytol 51:359–363

    Google Scholar 

  • Snow R (1958) Phyllotaxis of Kniphofia and Lilium candium. New Phytol 57:160–167

    Google Scholar 

  • Snow M, Snow R (1962) A theory of the regulation of phyllotaxis based on Lupinus albus. Phil Trans Roy Soc B 244:483–513

    Google Scholar 

  • Soma K, Kuriyama K (1970) Phyllotactic change in the shoot apex of Ambrosia artemisiaefolia var. elatior during ontogenesis. Bot Mag Tokyo 83:13–20

    Google Scholar 

  • Swaddle JP, Cuthill IC (1994) Preference for symmetric males by female zebra finches. Nature 367:165–166

    Google Scholar 

  • Thomas RL (1975) Orthostichy, parastichy and plastochrone ratio in a central theory of phyllotaxis. Ann Bot 39:455–489

    Google Scholar 

  • Tomlinson PB, Wheat DW (1979) Bijugate phyllotaxis in Rhizophoreae (Rhizophoraceae). Bot J Linnean Soc 78:317–321

    Google Scholar 

  • Tomlinson PB, Zacharias EH (2001) Phyllotaxis, phenology and architecture in Cephalotaxus, Torreya and Amentotaxus (Coniferales). Bot J Linn Soc 135:215–228

    Google Scholar 

  • Troll W (1937) Vergleichende Morphologie der höheren Pflanzen Bd. 1: Vegetationsorgane. Verlag von Gebrüder Borntraeger, Berlin (in German)

    Google Scholar 

  • Usugami H (1964) Relationship between the flowering habit and the system of leaf emergence in tomato plants. Agr Hort 39:1281–1283 (in Japanese)

    Google Scholar 

  • Weitzman AL, Dressler S, Stevens PF (2004) Ternstroemiaceae. In: Kubitzki K (ed) Flowering plants dicotyledons. The families and genera of vascular plants. Springer, Heidelberg

    Google Scholar 

  • Weyl H (1952) Symmetry. Princeton University Press, Princeton

    Google Scholar 

  • Williams RF, Metcalf RA, Gust LW (1982) The genesis of form in oleander (Nerium oleander L.). Aust J Bot 30:677–687

    Google Scholar 

  • Yamada H, Tanaka R, Nakagaki T (2004) Sequences of symmetry-breaking in phyllotactic transitions. Bull Math Biol 66:779–789

    PubMed  Google Scholar 

  • Yin X, Meicenheimer RD (2017) The ontogeny, phyllotactic diversity, and discontinuous transitions of Diphasiastrum digitatum (Lycopodiaceae). Am J Bot 104:8–23

    PubMed  Google Scholar 

  • Yonekura T, Iwamoto A, Fujita H, Sugiyama M (2019) Mathematical model studies of the comprehensive generation of major and minor phyllotactic patterns in plants with a predominant focus on orixate phyllotaxis. PLOS Comput Biol 15:e1007044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yotsumoto A (1993) A diffusion model for phyllotaxis. J Theor Biol 162:131–151

    Google Scholar 

  • Zagórska-Marek B (1994) Phyllotaxic diversity in Magnolia flowers. Acta Soc Bot Pol 63:117–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takaaki Yonekura or Munetaka Sugiyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 192 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonekura, T., Sugiyama, M. Symmetry and its transition in phyllotaxis. J Plant Res 134, 417–430 (2021). https://doi.org/10.1007/s10265-021-01308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01308-1

Keywords

Navigation