Skip to main content

Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin

Abstract

As a pleiotropic signal molecule, melatonin is ubiquitous throughout the animal and plant kingdoms and plays important roles in the regulation of plant growth, development, and responses to environmental stresses. In this study, we quantified the endogenous melatonin levels in upland cotton (Gossypium hirsutum L.), using high-performance liquid chromatography–tandem mass spectrometry. The melatonin concentrations in root, stem, and leaf were 150.60, 37.92, and 40.58 ng g fresh weight− 1, respectively. The effects of exogenous melatonin (1 µM) on plant growth, photosynthesis, antioxidant enzyme activity, and ion homeostasis in upland cotton seedlings exposed to 100 mM NaCl treatment were determined. Pretreatment (prior to exposure to salt stress) of seedlings with exogenous melatonin significantly alleviated plant growth inhibition by salt stress and maintained an improved photosynthetic capacity. The application of melatonin also significantly reduced the salt-induced oxidative damage, possibly through the accumulation of osmotic regulatory substances and the activation of antioxidant enzymes. We also showed that exogenous melatonin regulated the expression of stress-responsive and ion-channel genes under salinity, which could contribute to improved salt tolerance in cotton. Taken together, our study provides evidence that cotton contains endogenous melatonin, and it may have unraveled crucial evidence of the role of melatonin in cotton against salt stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot 2014:815769

    Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    CAS  PubMed  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2018) The potential of phytomelatonin as a nutraceutical. Molecules 23:238

    Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245

    CAS  PubMed  Google Scholar 

  • Beauchamp CO, Fridovich I (1973) Isozymes of superoxide dismutase from wheat germ. Biochim Biophys Acta 317:50–64

    CAS  PubMed  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Byeon Y, Tan D-X, Reiter RJ, Back K (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res 59:448–454

    CAS  PubMed  Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    CAS  PubMed  Google Scholar 

  • Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 12:e0181450

    PubMed  PubMed Central  Google Scholar 

  • Chen Y-E, Mao J-J, Sun L-Q, Huang B, Ding C-B, Gu Y, Liao J-Q, Hu C, Zhang Z-W, Yuan S, Yuan M (2018) Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant 164:349–363

    CAS  PubMed  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    CAS  PubMed  Google Scholar 

  • ElSayed AI, Boulila M, Rafudeen MS, Mohamed AH, Sengupta S, Rady M, Omar AA (2020) Melatonin regulatory mechanisms and phylogenetic analyses of melatonin biosynthesis related genes extracted from peanut under salinity stress. Plants 9:854

    CAS  PubMed Central  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    CAS  PubMed  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    CAS  PubMed  Google Scholar 

  • Jiang CQ, Cui QR, Feng K, Xu DF, Li CF, Zheng QS (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:1–9

    Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65:e12526

    PubMed  Google Scholar 

  • Kochba J, Lavee S, Spiegel-Roy P (1977) Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’ orange ovular callus lines1. Plant Cell Physiol 18:463–467

    CAS  Google Scholar 

  • Lee HY, Back K (2018) Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. J Pineal Res 65:e12504

    PubMed  Google Scholar 

  • Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J Pineal Res 57:262–268

    CAS  PubMed  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53:298–306

    CAS  PubMed  Google Scholar 

  • Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J (2016) Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61:291–302

    CAS  PubMed  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li C, Zhao Q, Gao T, Wang H, Zhang Z, Liang B, Wei Z, Liu C, Ma F (2018) The mitigation effects of exogenous melatonin on replant disease in apple. J Pineal Res 65:e12523

    PubMed  Google Scholar 

  • Li C, He Q, Zhang F, Yu J, Li C, Zhao T, Zhang Y, Xie Q, Su B, Mei L, Zhu S, Chen J (2019a) Melatonin enhances cotton immunity to verticillium wilt via manipulating lignin and gossypol biosynthesis. Plant J 100:784–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019b) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24:1826

    CAS  PubMed Central  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, Chu C (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59:91–101

    CAS  PubMed  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep-Uk 6:35040

    CAS  Google Scholar 

  • Liu JL, Wang WX, Wang LY, Sun Y (2015) Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul 77:317–326

    CAS  Google Scholar 

  • Ma L, Hu L, Fan J, Amombo E, Khaldun ABM, Zheng Y, Chen L (2017) Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology 26:841–854

    CAS  PubMed  Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67:3023–3029

    CAS  PubMed  Google Scholar 

  • Mittler R (2016) ROS are good. Trends Plant Sci 22:11–19

    PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 30:619–627

    CAS  Google Scholar 

  • Pignone AM, Rosso AD, Fiori G, Matucci-Cerinic M, Becucci A, Tempestini A, Livi R, Generini S, Gramigna L, Benvenuti C, Carossino AM, Conforti ML, Perfetto F (2006) Melatonin is a safe and effective treatment for chronic pulmonary and extrapulmonary sarcoidosis. J Pineal Res 41:95–100

    CAS  PubMed  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31

    CAS  PubMed  Google Scholar 

  • Riga P, Medina S, Garcia-Flores LA, Gil-Izquierdo A (2014) Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation. Food Chem 156:347–352

    CAS  PubMed  Google Scholar 

  • Sang J, Wang Z, Li M, Cao J, Niu G, Xia L, Zou D, Wang F, Xu X, Han X, Fan J, Yang Y, Zuo W, Zhang Y, Zhao W, Bao Y, Xiao J, Hu S, Hao L, Zhang Z (2018) ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Res 46:D121–D126

    CAS  PubMed  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant 153:284–298

    CAS  PubMed  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    CAS  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2015) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    CAS  PubMed  Google Scholar 

  • Singh VK, Mangalam AK, Dwivedi S, Naik S (1998) Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques 24:318–319

    CAS  PubMed  Google Scholar 

  • Sun C, Lv T, Huang L, Liu X, Jin C, Lin X (2020) Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J Pineal Res 68:e12642

    CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    CAS  PubMed  Google Scholar 

  • Tang Q-Y, Zhang C-X (2013) Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci 20:254–260

    PubMed  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Google Scholar 

  • Ullah A, Sun H, Hakim, Yang X, Zhang X (2018) A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant 162:439–454

    CAS  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    CAS  PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Google Scholar 

  • Wang N, Qi H, Qiao W, Shi J, Xu Q, Zhou H, Yan G, Huang Q (2017) Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance. Acta Physiol Plant 39:77

    Google Scholar 

  • Wang M, Zhang S, Ding F (2020) Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants-Basel 9:218

    PubMed Central  Google Scholar 

  • Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu X-M, Zhu D-H, Zhang W-K, Ma B, Lin Q, Zhang J-S, Chen S-Y (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    CAS  PubMed  Google Scholar 

  • Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls A and B of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research: proceedings of the VIth international congress on photosynthesis, Brussels, Belgium, August 1–6, 1983 . Springer Netherlands, Dordrecht, pp 9–12

  • Wu C-A, Yang G-D, Meng Q-W, Zheng C-C (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    CAS  PubMed  Google Scholar 

  • Xia H, Ni Z, Pan D (2017) Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress. IOP Conf Ser Earth Environ Sci 94:012024

    Google Scholar 

  • Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    CAS  PubMed  Google Scholar 

  • Xu C, Huang B (2010) Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J Plant Physiol 167:1477–1485

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018a) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018b) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    CAS  PubMed  Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54:426–434

    CAS  PubMed  Google Scholar 

  • Zeng L, Cai J-S, Li J-J, Lu G-Y, Li C-S, Fu G-P, Zhang X-K, Ma H-Q, Liu Q-Y, Zou X-L, Cheng Y (2018) Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integr Agric 17:328–335

    CAS  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    CAS  PubMed  Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA(4) interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197

    PubMed  PubMed Central  Google Scholar 

  • Zhang R, Sun Y, Liu Z, Jin W, Sun Y (2017) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res 62:e12403

    Google Scholar 

  • Zhang X, Zhang H, Zhang H, Tang M (2020) Exogenous melatonin application enhances Rhizophagus irregularis symbiosis and induces the antioxidant response of Medicago truncatula under lead stress. Front Microbiol 11:516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was mainly supported by National Key R&D Program of China (Grant nos. 2018YFD0100303) and China Major Projects for Transgenic Breeding (Grant nos. 2016ZX08005-004).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, FS and WW; validation, FS and WW; formal analysis, JS and DC; investigation, DC, QX, XZ, RS, JD, YC, MH and JS; data curation, DC, QX, XZ, RS, JD, YC, MH and JS; writing—original draft preparation, JS; writing—review and editing, DC, FS and WW; supervision, WW and FS; project administration, JS, FS and WW; funding acquisition, WW.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 889 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Chen, D., Zhang, X. et al. Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin. J Plant Res 134, 857–871 (2021). https://doi.org/10.1007/s10265-021-01284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01284-6

Keywords

  • Melatonin
  • Salt stress
  • Transcription factors
  • Upland cotton