Adams JB, Sabol DE, Kapos V et al (1995) Classification of multispectral images based on fractions of endmembers: application to land-cover change in the brazilian amazon. Remote Sens Environ 52:137–154. https://doi.org/10.1016/0034-4257(94)00098-8
Article
Google Scholar
An JP, Zhang XW, Bi SQ et al (2019) MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. New Phytol 222:735–751. https://doi.org/10.1111/nph.15628
CAS
Article
PubMed
Google Scholar
Bian JH, Li AN, Zhang ZJ et al (2017) Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model. Remote Sens Environ 197:98–114. https://doi.org/10.1016/j.rse.2017.05.031
Article
Google Scholar
Cai W (2010) Recognition and area estimation of wheat based on mixed pixel decomposition of MODIS remote sensing data. Dissertation, Shandong Normal University
De Asis AM, Omasa K (2007) Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of landsat ETM data. ISPRS J Photogramm 62:309–324. https://doi.org/10.1016/j.isprsjprs.2007.05.013
Article
Google Scholar
Degerickx J, Roberts DA, Somers B (2019) Enhancing the performance of multiple endmember spectral mixture analysis (MESMA) for urban land cover mapping using airborne lidar data and band selection. Remote Sens Environ 221:260–273. https://doi.org/10.1016/j.rse.2018.11.026
Article
Google Scholar
Dennison PE, Roberts DA (2003) Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sens Environ 87:123–135. https://doi.org/10.1016/S0034-4257(03)00135-4
Article
Google Scholar
Du HQ, Fan WL, Zhou GM et al (2011) Retrieval of canopy closure and lai of moso bamboo forest using spectral mixture analysis based on real scenario simulation. IEEE T Geosci Remote 49:4328–4340. https://doi.org/10.1109/TGRS.2011.2107327
Article
Google Scholar
Fan FL, Deng YB (2015) Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters. Int J Appl Earth Observ 36:103–105. https://doi.org/10.1016/j.jag.2014.11.004
CAS
Article
Google Scholar
Fang HC, Dong YH, Yue XX et al (2019) Mdcol4 interaction mediates crosstalk between uv-b and high temperature to control fruit coloration in apple. Plant Cell Physiol 60:1055–1066. https://doi.org/10.1093/pcp/pcz023
CAS
Article
PubMed
Google Scholar
Fernández-Manso A, Quintano C, Roberts D (2012) Evaluation of potential of multiple endmember spectral mixture analysis (MESMA) for surface coal mining affected area mapping in different world forest ecosystems. Remote Sens Environ 127:181–193. https://doi.org/10.1016/j.rse.2012.08.028
Article
Google Scholar
Gaston E, Frias JM, Cullen PJ et al (2010) Prediction of polyphenol oxidase activity using visible near-infrared hyperspectral imaging on mushroom (Agaricus bisporus) caps. J Agr Food Chem 58:6226–6233. https://doi.org/10.1021/jf100501q
CAS
Article
Google Scholar
Green AA, Berman M, Switzer P et al (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE T Geosci Remote 26:65–74. https://doi.org/10.1109/36.3001
Article
Google Scholar
Gu HY, Li HT, Yang JH (2007) The remote sensing image fusion method based on minimum noise fraction. Remote Sens Land Res 2:53–55
Google Scholar
Han PL, Dong YH, Gu KD et al (2019) The apple U-box E3 ubiquitin ligase MdPUB29 contributes to activate plant immune response to the fungal pathogen Botryosphaeria dothidea. Planta 249:1177–1188. https://doi.org/10.1007/s00425-018-03069-z
CAS
Article
PubMed
Google Scholar
Hu BX, Miller JR, Chen JM et al (2004) Retrieval of the canopy leaf area index in the boreas flux tower sites using linear spectral mixture analysis. Remote Sens Environ 89:176–188. https://doi.org/10.1016/j.rse.2002.06.003
Article
Google Scholar
Jin LF, Lu SH, Zhu XH (1986) RS-II 4-Channel spectrometer and its specification. J Remote Sens 1:129–131
Google Scholar
Le Maire G, François C, Dufrêne E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ 89:1–28. https://doi.org/10.1016/j.rse.2003.09.004
Article
Google Scholar
Lee ZP, Carder KL (2004) Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sens Environ 89:361–368. https://doi.org/10.1016/j.rse.2003.10.013
Article
Google Scholar
Lee JB, Woodyatt AS, Berman M (1990) Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform. IEEE T Geosci Remote 28:295–304. https://doi.org/10.1109/36.54356
Article
Google Scholar
Liu J, Yao GQ (2009) Research on the methods of unmixing the mixed pixels. Computer Know Tech 5:3499–3500
Google Scholar
Liu SS, Li LT, Gao WH et al (2018) Diagnosis of nitrogen status inwinter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Comput Electron Agr 151:185–195. https://doi.org/10.1016/j.compag.2018.05.026
Article
Google Scholar
Quintano C, Fernández-Manso A, Roberts DA (2013) Multiple endmember spectral mixture analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens Environ 136:76–88. https://doi.org/10.1016/j.rse.2013.04.017
Article
Google Scholar
Shanmugam P, Ahn YH, Sanjeevi S (2006) A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India. Ecol Model 194:379–394. https://doi.org/10.1016/j.ecolmodel.2005.10.033
Article
Google Scholar
Thorp KR, French AN, Rango A (2013) Effect of image spatial and spectral characteristics on mapping semi-arid rangeland vegetation using multiple endmember spectral mixture analysis (MESMA). Remote Sens Environ 132:120–130. https://doi.org/10.1016/j.rse.2013.01.008
Article
Google Scholar
Townshend JRG, Huang C, Kalluri SNV et al (2000) Beware of per-pixel characterization of land cover. Int J Remote Sens 21:839–843. https://doi.org/10.1080/014311600210641
Article
Google Scholar
Wang L, Zhao GX, Zhu XC et al (2012) Quantitative remote sensing retrieval of apple tree canopy reflectance at blossom stage in hilly area. Chin J Appl Ecol 23:2233–2241
Google Scholar
Wang L, Zhao GX, Zhu XC et al (2013) Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage. Chin J Appl Ecol 24:2863–2870
CAS
Google Scholar
Wei CW, Huang JF, Wang XZ et al (2017) Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves. Remote Sens Environ 195:56–66. https://doi.org/10.1016/j.rse.2017.03.042
Article
Google Scholar
Zeng Y, Schaepman ME, Wu BF et al (2009) Quantitative forest canopy structure assessment using an inverted geometric-optical model and upscaling. Int J Remote Sens 30:1385–1406. https://doi.org/10.1080/01431160802395276
Article
Google Scholar
Zhu HL (2005) Linear spectral unmixing assisted by probability guided and minimum residual exhaustive search for subpixel classification. Int J Remote Sens 26:5585–5601. https://doi.org/10.1080/01431160500181408
Article
Google Scholar