Aasamaa K, Sõber A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Funct Plant Biol 28:765–774
Google Scholar
Archaeopteryx (2018) https://sites.google.com/site/cmzmasek/home/software/archaeopteryx
Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions: an Australian perspective. Australian Academy of Science, Camberra, pp 21–33
Google Scholar
Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437
PubMed
Google Scholar
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986
PubMed
Google Scholar
Beest M, Le Roux JJ, Richardson DM et al (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45
Google Scholar
Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Ann Bot 82:121–134
Google Scholar
Berg JA, Meyer GA, Young EB (2016) Propagule pressure and environmental conditions interact to determine establishment success of an invasive plant species, glossy buckthorn (Frangula alnus), across five different wetland habitat types. Biol Invasions 18:1363–1373
Google Scholar
Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115
PubMed
Google Scholar
Bradley BA, Wilcove DS, Oppenheimer M (2010) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12:1855–1872
Google Scholar
Brochmann C, Brysting AK, Alsos IG et al (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536
Google Scholar
Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York
Google Scholar
Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:14–75
Google Scholar
Chandra A, Dubey A (2010) Effect of ploidy levels on the activities of Δ 1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiol Biochem 48:27–34
CAS
PubMed
Google Scholar
Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141
Google Scholar
Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037
Google Scholar
Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211
Google Scholar
Dawson W, Burslem DF, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J Ecol 97:657–665
Google Scholar
Deng B, Du W, Liu C, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66:37–47
CAS
Google Scholar
Dennis R, Thomas CD (2000) Bias in butterfly distribution maps: the influence of hot spots and recorder’s home range. J Insect Conserv 4:73–77
Google Scholar
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244
PubMed
Google Scholar
Dong M, Lu BR, Zhang HB, Chen JK, Li B (2006) Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers. Plant Spec Biol 21:13–18. https://doi.org/10.1111/j.1442-1984.2006.00146.x
Article
Google Scholar
Doudová J, Douda J, Mandák B (2017) The complexity underlying invasiveness precludes the identification of invasive traits: a comparative study of invasive and non-invasive heterocarpic Atriplex congeners. PLoS ONE 12:e0176455
PubMed
PubMed Central
Google Scholar
Drenovsky RE, Grewell BJ, D’Antonio CM (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153
PubMed
PubMed Central
Google Scholar
Dullinger S, Kleinbauer I, Peterseil J, Smolik M, Essl F (2009) Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history. Biol Invasions 11:2401–2414
Google Scholar
Ferreras AE, Galetto L (2010) From seed production to seedling establishment: important steps in an invasive process. Acta Oecologica 36:211–218
Google Scholar
Francis D, Davies MS, Barlow PW (2008) A strong nucleotypic effect on the cell cycle regardless of ploidy level. Ann Bot 101:747–757
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Voyer A, von Hardenberg A (2014) An introduction to phylogenetic path analysis. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin, pp 201–229
Google Scholar
Gonzalez-Voyer A, González-Suárez M, Vilà C, Revilla E (2016) Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution 70:1364–1375
PubMed
Google Scholar
Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260
CAS
PubMed
PubMed Central
Google Scholar
Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL, Soltis P (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–1729
CAS
PubMed
Google Scholar
Guarino F, Cicatelli A, Brundu G, Improta G, Triassi M, Castiglione S (2019) The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS ONE 14:e0215096
CAS
PubMed
PubMed Central
Google Scholar
Hamilton JA, Miller JM (2016) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol 30:33–41
PubMed
Google Scholar
Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology (Vol. 239). Oxford university press, Oxford
Higgins SI, Richardson DM (2014) Invasive plants have broader physiological niches. Proc Natl Acad Sci USA 111:10610–10614
CAS
PubMed
Google Scholar
Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Glob Ecol Biogeogr 16:485–495
Google Scholar
Hou QQ, Chen BM, Peng SL, Chen LY (2014) Effects of extreme temperature on seedling establishment of nonnative invasive plants. Biol Invasions 16:2049–2061
Google Scholar
Janssens SB, Couvreur TL, Mertens A et al (2020) A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodivers Data J 8:e39677. https://doi.org/10.3897/BDJ.8.e39677
Article
PubMed
PubMed Central
Google Scholar
Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413
Google Scholar
Kissling WD, Lord JM, Schnittler M (2006) Agamospermous seed production of the invasive tussock grass Nardus stricta L. (Poaceae) in New Zealand–evidence from pollination experiments. Flora 201:144–151
Google Scholar
Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76
Google Scholar
Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766
PubMed
PubMed Central
Google Scholar
Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190
CAS
PubMed
PubMed Central
Google Scholar
Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233
PubMed
PubMed Central
Google Scholar
Křivánek M, Pyšek P, Jarošík V (2006) Planting history and propagule pressure as predictors of invasion by woody species in a temperate region. Biol Conserv 20:1487–1498
Google Scholar
Lambdon PW (2008) Is invasiveness a legacy of evolution? Phylogenetic patterns in the alien flora of Mediterranean islands. J Ecol 96:46–57
Google Scholar
Landis JB, Kurti A, Lawhorn AJ et al (2020) Differential gene expression with an emphasis on floral organ size differences in natural and synthetic polyploids of Nicotiana tabacum (Solanaceae). Genes 11:1–24
Google Scholar
Lavergne S, Muenke NJ, Molofsky J (2010) Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot 105:109–116
CAS
PubMed
Google Scholar
Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. https://doi.org/10.1016/S0169-5347(02)02554-5
Article
Google Scholar
Leffler AJ, James JJ, Monaco TA, Sheley RL (2014) A new perspective on trait differences between native and invasive exotic plants. Ecology 95:298–305
PubMed
Google Scholar
Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community-and global-scale comparisons. New Phytol 176:635–643
CAS
PubMed
Google Scholar
Leishman MR, Thomson VP, Cooke J (2010) Native and exotic invasive plants have fundamentally similar carbon capture strategies. J Ecol 98:28–42
CAS
Google Scholar
Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 153–176
Google Scholar
Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD (2019) Plant DNA C-values. https://cvalues.science.kew.org/. Accessed 12 Sep 2019
Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York
Google Scholar
Linder HP, Barker NP (2014) Does polyploidy facilitate long-distance dispersal? Ann Bot 113:1175–1183
PubMed
PubMed Central
Google Scholar
Liu Y, Oduor AMO, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, van Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Glob Chang Biol 23(8):3363–3370
PubMed
Google Scholar
Lowry E, Lester SE (2006) The biogeography of plant reproduction: potential determinants of species’ range sizes. J Biogeogr 33:1975–1982
Google Scholar
Maceira NO, Jacquard P, Lumaret R (1993) Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol 124:321–328
Google Scholar
McNeely JA, Mooney HA, Neville LE, Schei PJ, Waage JK (2001) Global strategy on invasive alien species. In: Gland and Cambridge, IUCN in collaboration with the Global Invasive Species Programme
Molina-Venegas R, Rodríguez MÁ (2017) Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol Biol 17:53. https://doi.org/10.1186/s12862-017-0898-y
Article
PubMed
PubMed Central
Google Scholar
Mundry R (2014) Statistical issues and assumptions of phylogenetic generalized least squares. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer, Berlin, pp 131–153
Google Scholar
Oduor AM (2013) Evolutionary responses of native plant species to invasive plants: a review. New Phytol 200:986–992
PubMed
Google Scholar
Pandit MK (2006) Continuing the search for pattern among rare plants: are diploid species more likely to be rare? Evol Ecol Res 8:543–552
Google Scholar
Pandit MK, White SM, Pocock MJ (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703
CAS
PubMed
Google Scholar
Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Besse P (ed) Molecular plant taxonomy. Humana Press, Totowa, pp 279–307
Google Scholar
Peng X, Li H, Yang Y et al (2017) Vegetative propagation capacity of invasive alligator weed through small stolon fragments under different treatments. Sci Rep 7:43826. https://doi.org/10.1038/srep43826
Article
PubMed
PubMed Central
Google Scholar
Pfennig KS, Kelly AL, Pierce AA (2016) Hybridization as a facilitator of species range expansion. Proc R Soc B 283:20161329. https://doi.org/10.1098/rspb.2016.1329
Article
PubMed
Google Scholar
Proches S, Wilson JRU, Richardson DM, Rejmánek M (2008) Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr 17:5–10
Google Scholar
Pyšek P, Jarošík V (2005) Residence time determines the distribution of alien plants. In: Inderjit (eds) Invasive plants: ecological and agricultural aspects. Birkhäuser Basel, Switzerland, pp 77–96
Pyšek P, Křivánek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744
PubMed
Google Scholar
Pyšek P, Jarošík V, Hulme PE et al (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18:1725–1737
Google Scholar
Pyšek P, Manceur AM, Alba C et al (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96:762–774
PubMed
Google Scholar
Pyšek P, Skálová H, Čuda J (2018) Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 99:79–90
PubMed
Google Scholar
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181
Google Scholar
Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661
Google Scholar
Rezende L, Suzigan J, Amorim FW, Moraes AP (2020) Can plant hybridization and polyploidy lead to pollinator shift? Acta Bot Brasilica 34:229–242
Google Scholar
Rice A, Glick L, Abadi S et al (2015) The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol 206:19–26
PubMed
Google Scholar
Rieseberg LH, Kim SC, Randell RA et al (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165
PubMed
Google Scholar
Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60:1509–1515
PubMed
Google Scholar
Ross LC, Lambdon PW, Hulme PE (2008) Disentangling the roles of climate, propagule pressure and land use on the current and potential elevational distribution of the invasive weed Oxalis pes-caprae L. on Crete. Perspect Plant Ecol 10:251–258
Google Scholar
Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724
PubMed
Google Scholar
Segraves KA, Anneberg TJ (2016) Species interactions and plant polyploidy. Am J Bot 103:1326–1335
PubMed
Google Scholar
Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–165. https://doi.org/10.1111/j.1445-6664.2005.00178.x
Article
Google Scholar
Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge
Google Scholar
Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368
PubMed
Google Scholar
Shipley B (2013) The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94:560–564
PubMed
Google Scholar
Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol S 40:81–102
Google Scholar
Song Y, Endepols S, Klemann N et al (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21:1296–1301
CAS
PubMed
PubMed Central
Google Scholar
Štajner N, Bohanec B, Javornik B (2002) Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Sci 162:931–937
Google Scholar
Stelkens RB, Brockhurst MA, Hurst GDD, Greig D (2014) Hybridization facilitates evolutionary rescue. Evol Appl 7:1209–1217
PubMed
PubMed Central
Google Scholar
Stutz S, Hinz HL, Konowalik K, Müller-Schärer H, Oberprieler C, Schaffner U (2016) Ploidy level in the genus Leucanthemum correlates with resistance to a specialist herbivore. Ecosphere 7:e01460
Google Scholar
Suda J, Meyerson LA, Leitch IJ, Pyšek P (2015) The hidden side of plant invasions: the role of genome size. New Phytol 205:994–1007
PubMed
Google Scholar
Thuiller W, Richardson DM, Rouget M, Proches S, Wilson JRU (2006) Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 87:1755–1769
PubMed
Google Scholar
Treier UA, Broennimann O, Normand S et al (2009) Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90:1366–1377
PubMed
Google Scholar
van der Bijl W (2018) phylopath: Easy phylogenetic path analysis in R. PeerJ 6:e4718. https://doi.org/10.7717/peerj.4718
Article
PubMed
PubMed Central
Google Scholar
van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245
PubMed
Google Scholar
Veselý P, Šmarda P, Bureš P et al (2020) Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. Ann Bot 126:323–330
PubMed
Google Scholar
Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614
CAS
PubMed
Google Scholar
von Hardenberg A, Gonzalez-Voyer A (2013) Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory Path Analysis. Evolution 67:378–387. https://doi.org/10.1111/j.1558-5646.2012.01790.x
Article
Google Scholar
Wan JZ, Chen LX, Gao S et al (2019) Ecological niche shift between diploid and tetraploid plants of Fragaria (Rosaceae) in China. S Afr J Bot 121:68–75
Google Scholar
Wang MZ, Li HL, Li JM, Yu FH (2019) Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity 124:146–155. https://doi.org/10.1038/s41437-019-0261-8
Article
PubMed
PubMed Central
Google Scholar
Warren RJ, Bahn V, Bradford MA (2012) The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion. Oikos 121:874–881
Google Scholar
Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170
Google Scholar
Wilson JR, Richardson DM, Rouget M, Procheş Ş, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22
Google Scholar
Witkowski ETF, Wilson M (2001) Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecol 152:13–27
Google Scholar
Zhang Y, Parepa M, Fischer M, Bossdorf O (2016) Epigenetics of colonizing species? A study of Japanese knotweed in Central Europe. In: Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH (eds) Invasion genetics: the baker and stebbins legacy. Wiley, Chichester, pp 328–340
Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14
Google Scholar