Skip to main content
Log in

VrLELP controls flowering time under short-day conditions in Arabidopsis

Journal of Plant Research Aims and scope Submit manuscript

Abstract

Flowering time has a critically important effect on the reproduction of plants, and many components involved in flowering-time regulation have been identified in multiple plant species. However, studies of the flowering-time genes in mungbean (Vigna radiata) have been limited. Here, we characterized a novel mungbean gene, VrLELP, involved in flowering-time regulation in transgenic Arabidopsis. Subcellular localization analysis revealed that VrLELP was localized in the membrane, cytoplasm and nucleus and the nucleus and membrane contained higher signal than cytoplasm, similar to the empty vector control. The expression of VrLELP was higher in leaves and pods and lower in nodule roots relative to other tissues. The expression of VrLELP varied during flower development. The expression of VrLELP also varied during the day, reaching a peak after 12 h of illumination under long-day conditions. In contrast, under short-day conditions, the abundance of VrLELP transcripts changed little throughout the day. In addition, VrLELP delayed flowering time in transgenic Arabidopsis plants by suppressing the expression of the flowering-time genes CO and FT under short-day conditions. However, VrLELP did not affect flowering time under long-day conditions in Arabidopsis. Our study provides essential information for future studies of the molecular mechanisms of the flowering-time regulation system in mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    CAS  PubMed  Google Scholar 

  • Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    CAS  PubMed  Google Scholar 

  • Bent A (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103

    CAS  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18-31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    CAS  PubMed  Google Scholar 

  • Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci 19:460–470

    CAS  PubMed  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA 109:3167–3172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 17:719–722

    Google Scholar 

  • He Y, Michaels S, Amasino R (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754

    CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    PubMed  Google Scholar 

  • Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79

    CAS  PubMed  Google Scholar 

  • Imrie BC (1996) Mungbean. In: Hyde K (ed) The new rural industries: a handbook for farmers and investors. Rural Industries Research and Development Corporation, Canberra, pp 355–360

    Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1-17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Tang X, Xing M, Zhu H, Sui J, Cai C, Li S (2019) Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis. BMC Plant Biol 19:484

    PubMed  PubMed Central  Google Scholar 

  • Jin H, Xing M, Cai C, Li S (2020) B-box proteins in Arachis duranensis: genome-wide characterization and expression profiles analysis. Agronomy 10:23

    CAS  Google Scholar 

  • Johansson M, Staiger D (2015) Time to flower: interplay between photoperiod and the circadian clock. J Exp Bot 66:719–730

    CAS  PubMed  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee SH (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443

    CAS  PubMed  Google Scholar 

  • Keatinge JDH, Easdown WJ, Yang RY, Chadha ML, Shanmugasundaram S (2011) Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129–141

    Google Scholar 

  • Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK (2008) OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355–365

    CAS  PubMed  Google Scholar 

  • Kim SK, Nair RM, Lee J, Lee SH (2015) Genomic resources in mungbean for future breeding programs. Front Plant Sci 6:626

    PubMed  PubMed Central  Google Scholar 

  • Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145:1484–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774

    CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    CAS  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    CAS  PubMed  Google Scholar 

  • Lambrides CJ, Godwin ID (2007) Mungbean. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 69–90

    Google Scholar 

  • Li S, Wang R, Jin H, Ding Y, Cai C (2019) Molecular characterization and expression profile analysis of heat shock transcription factors in mungbean. Front Genet 9:736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XQ, Xing T, Du D (2016) Identification of top-ranked proteins within a directional protein interaction network using the pagerank algorithm: applications in humans and plants. Curr Issues Mol Biol 20:29–46

    CAS  PubMed  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13(6):1293–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ping J, Liu Y, Sun L, Zhao M, Li Y, She M, Sui Y, Lin F, Liu X, Tang Z, Nguyen H, Tian Z, Qiu L, Nelson RL, Clemente TE, Specht JE, Ma J (2014) Dt2 is a gain-of-function MADS-Domain factor gene that specifies semideterminacy in soybean. Plant Cell 26:2831–2842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putterill J, Robson F, Lee K, Coupland G (1993) Chromosome walking with YAC clones in Arabidopsis: isolation of 1700 kb of contiguous DNA on chromosome 5, including a 300 kb region containing the flowering-time gene CO. Mol Gen Genet 239:145–157

    CAS  PubMed  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    CAS  PubMed  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    CAS  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Imaizumi T (2015) Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry 54:157–170

    CAS  PubMed  Google Scholar 

  • Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173:5–15

    CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod-and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol 66:441–464

    CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    CAS  PubMed  Google Scholar 

  • Vas Aggarwal D, Poehlman J (1977) Effects of photoperiod and temperature on flowering in mungbean (Vigna radiata (L.) WILCZEK). Euphytica 26:207–219

    Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    CAS  PubMed  Google Scholar 

  • Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    CAS  PubMed  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Chong K (2018) Remembering winter through vernalisation. Nat Plants 4:997–1009

    PubMed  Google Scholar 

  • Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46:1175–1189

    CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q (2020) A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules 10:506

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Suk-Ha Lee at Seoul National University, Seoul, Korea, for supplying mungbean VC1973A seeds. This research was funded by the National Key R & D Project (grant 2016YFD0100304, 2016YFD0101005), the National Natural Science Foundation of China (grant 31971898), the Project of Shandong Province Higher Educational Science and Technology Program (J18KA133), and the Major Scientific and Technological Innovation project in Shandong Province (2018CXGC0308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Xu, W., Liu, T. et al. VrLELP controls flowering time under short-day conditions in Arabidopsis. J Plant Res 134, 141–149 (2021). https://doi.org/10.1007/s10265-020-01235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01235-7

Keywords

Navigation