Skip to main content
Log in

Fungal colonization associated with phenological stages of a photosynthetic terrestrial temperate orchid from the Southern Iberian Peninsula

  • Regular Paper – Taxonomy/Phylogenetics/Evolutionary Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Fungal endophytes, both mycorrhizal and non-mycorrhizal, are involved in the development of the life cycle of orchids, providing potential beneficial relationships. Here, we assess the succession of changes in the diversity of fungal symbionts associated with a terrestrial temperate orchid species, Anacamptis morio subsp. champagneuxii, over three phenological stages: developed leaves but no stem elongation, flowering, and fruiting. Fungi endophyte associated with roots were obtained by culture in sterile conditions. A total of 18 morphotypes—one Mortierellomycota, two Basidiomycota and 15 Ascomycota—were differentiated, and were also characterized using PCR and DNA sequencing techniques. Only three of the 18 OTUs are shared among the three phenological stages examined: Westerdykella sp., a member of Ceratobasidiaceae, and Fusarium oxysporum, representing a relative abundance of between 28% (fruiting) to 41% (flowering). Our research confirmed that fungal symbionts varied among the different phenological stages examined, the peak of endophyte diversity appearing in the flowering stage. The availability of a diverse mycobiota seems to be important for the survival of orchid plants because it may cover particular physiological needs, and knowledge concerning this mycobiota is of special relevance in the establishment of reliable conservation programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:e1–e13

    Google Scholar 

  • AEMET (2020) Agencia Estatal de Meteorología (Government of Spain). https://www.aemet.es. Accessed 16 Jul 2020

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Bailarote BC, Lievens B, Jacquemyn H (2012) Does mycorrhizal specificity affect orchid decline and rarity? Am J Bot 99:1655–1665

    Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2002) Orchid conservation and mycorrhizal associations. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in plant conservation and biodiversity. Kluwer Academic Publishers, Dordrecht, pp 195–226

    Google Scholar 

  • Bayman P, Mosquera-Espinosa AT, Saladini-Aponte CM, Hurtado-Guevara NC, Viera-Ruiz NL (2016) Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. Am J Bot 103:1880–1889

    Google Scholar 

  • Bertolini V, Cruz-Blasi J, Damon A, Valle Mora J (2014) Seasonality and mycorrhizal colonization in three species of epiphytic orchids in southeast Mexico. Acta Bot Brasil 28:512–518

    Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Pro R Soc B 271:1799–1806

    CAS  Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty AL, Dixon KW, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships, and alien invasions. Mycol Res 111:51–61

    Google Scholar 

  • Cachumba JJM, Antunes FAF, Dias Peres GF, Brumano LP, Dos Santos JC, Da Silva SS (2016) Current applications and different approaches for microbial l-asparaginase production. Braz J Microbiol 47:77–85

    CAS  Google Scholar 

  • Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R (2014) Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 81:71–85

    Google Scholar 

  • Cevallos S, Herrera P, Sánchez-Rodríguez A, Declerck S, Suárez JP (2018) Untangling factors that drive community composition of root associated fungal endophytes of Neotropical epiphytic orchids. Fungal Ecol 34:67–75

    Google Scholar 

  • Chen J, Hu K-H, Hou X-Q (2010) Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). Word J Microbiol Biotechnol 27:1009–1016

    Google Scholar 

  • Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE 10:e0141444

    Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    CAS  Google Scholar 

  • Credali A, Garcia-Calderon M, Dam S, Perry J, Diaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Marquez AJ (2013) The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus. Plant Cell Physiol 54:107–118

    CAS  Google Scholar 

  • Currah RS, Sigler L, Hambleton S (1987) New records and new taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Can J Bot 65:2473–2482

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse MA (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, 2nd edn. Springer, Berlin, pp 207–230

    Google Scholar 

  • Demers JE, Gugino BK, Jiménez-Gasco MM (2014) Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl Environ Microbiol 81:81–90

    Google Scholar 

  • Dighton J (2009) Mycorrhizae. In: Schaechter M (ed) Encyclopedia of microbiology, vol IV, 3rd edn. Elsevier, Oxford, pp 153–162

    Google Scholar 

  • Ding R, Chen XH, Zhang LJ, Yu XD, Qu B, Duan R, Xu YF (2014) Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae) in Northeast China. PLoS ONE 9:e105573

    Google Scholar 

  • Dressler RL (2005) How many orchid species? Selbyana 155−158

  • Dyal SD, Narine SS (2005) Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int 38:445–467

    CAS  Google Scholar 

  • Ercole E, Adamo M, Rodda M, Gebauer G, Girlanda M, Perotto S (2015) Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytol 205:1308–1319

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fernández di Pardo A, Chiocchio V, Barrera V, Colombo RP, Martinez AE, Gasoni L, Godeas AM (2015) Mycorrhizal fungi isolated from native terrestrial orchids of pristine regions in Córdoba (Argentina). Rev Biol Trop 63:275–283

    Google Scholar 

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078

    Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis. Part 1, SSSA Book Ser. N 5. SSSA, Madison, pp 383–409

    Google Scholar 

  • Gezgin Y, Eltem R (2009) Diversity of endophytic fungi from various Aegean and Mediterranean orchids (saleps). Turk J Bot 33:439–445

    Google Scholar 

  • Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504

    CAS  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    Google Scholar 

  • Govaerts R, Bernet P, Kratochvil K, Gerlach G, Carr G, Alrich P, Pridgeon AM, Pfahl J, Campacci MA, Holland Baptista D, Tigges H, Shaw J, Cribb P, George A, Kreuz K, Wood J (2017) World checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. https://apps.kew.org/wcsp.science.kew.org. Accessed 15 Oct 2019

  • Grace C, Stribley DP (1991) A safer procedure for routin estaining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Han JYC, Xiao H, Gao JY (2016) Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. f) Pfitzer—a critically endangered orchid from China. Glob Ecol Conserv 6:327–338

    Google Scholar 

  • He J, Tedersoo L, Hu A, Han C, He D, Wei H, Jiao M, Anslan S, Nie Y, Jia Y (2017) Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol Ecol 93(7):fix069. https://doi.org/10.1093/femsec/fix069

    Article  CAS  Google Scholar 

  • Herrera H, Valadares R, Contreras D, Bashan Y, Arriaga C (2017) Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 27:175–188

    CAS  Google Scholar 

  • Hodkinson TR, Murphy BR (2019) Endophytes for a growing world. In: Hodkinson TR, Doohan FM, Saunders MJ, Murphy BR (eds) Endophytes for a growing world. Cambridge University Press, Cambridge, pp 3–22

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  Google Scholar 

  • Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue BP, Honnay O, Lievens B (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528

    Google Scholar 

  • Jacquemyn H, Brys R, Merckx VS, Waud M, Lievens B, Wiegand T (2014) Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol 202:616–627

    Google Scholar 

  • Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B (2015a) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134

    CAS  Google Scholar 

  • Jacquemyn H, Waud M, Merckx VSFT, Lievens B, Brys R (2015b) Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Mol Ecol 24:3269–3280

    Google Scholar 

  • Jacquemyn H, Waud M, Brys R, Lallemand F, Courty P-E, Robionek A, Selosse M-A (2017) Mycorrhizal associations and trophic modes in coexisting orchids: an ecological continuum between auto and mixotrophy. Front Plant Sci 8:1497. https://doi.org/10.3389/fpls.2017.01497

    Article  Google Scholar 

  • James TY, Kauff F, Schoch CL (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  Google Scholar 

  • Jiang W, Yang G, Zhang C, Fu C (2011a) Species composition and molecular analysis of symbiotic fungi in roots of Changnienia amoena (Orchidaceae). Afr J Microbiol Res 5:222–228

    Google Scholar 

  • Jiang X, Yu H, Xiang M, Liu X, Liu X (2011b) Echinochlamydosporium variabile, a new genus and species of Zygomycota from soil nematodes. Fung Divers 46:43–51

    Google Scholar 

  • Johnston PR, Quijada L, Smith CA, Baral H-O, Hosoya T, Baschien C, Pätel K, Zhuang W-Y, Haelewaters D, Park D, Cal S, López-Giráldez F, Wang Z, Townsend JP (2019) A multigene phylogeny toward a new phylogenetic classification for the Leotiomycetes. IMA Fungus 10:1. https://doi.org/10.1186/s43008-019-0002-x

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–123

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate root endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231. https://doi.org/10.1186/1471-2180-8-231

    Article  CAS  Google Scholar 

  • Khan AN, Shair F, Malik K, Hayat Z, Khan MA, Hafeez FY, Hassan MN (2017) Molecular identifcation and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunfower and chickpea. Front Microbiol 8:1309. https://doi.org/10.3389/fmicb.2017.01309

    Article  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby's dictionary of the fungi,10th edn. CAB International, Wallingford

    Google Scholar 

  • Kohout P, Těšitelová T, Roy M, Vohník M, Jersáková J (2013) A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol 6:50–64

    Google Scholar 

  • Kretzschmar H, Accarius W, Dietrich H (2007) The orchid genera Anacamptis, Orchis, Neotinea, 2nd edn. EchinoMedia Verlag, Bürgel

    Google Scholar 

  • Lazarus KL, James TY (2015) Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. Fung Ecol 14:62–70

    Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    CAS  Google Scholar 

  • Lee BH, Han HK, Kwon HJ, Eom AH (2015) Diversity of endophytic fungi isolated from roots of Cypripedium japonicum and C. macranthum in Korea. Kor J Mycol 43:20–25

    Google Scholar 

  • Lee BH, Kwon WJ, Kim JY, Park JS, Eom AH (2017) Differences among endophytic fungal communities isolated from the roots of Cephalanthera longibracteata collected from different sites in Korea. Microbiology 45:312–317

    Google Scholar 

  • Lindsay WL, Norwell WA (1978) Development of DTPA soil for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Ma X, Kang J, Nontachaiyapoom S, Wen T, Hyde KD (2015) Non-mycorrhizal endophytic fungi from orchids. Curr Sci 119:72–87

    Google Scholar 

  • Masuhara G, Katsuya K (1991) Fungal coil formation of Rhizoctonia repens in seedlings of Galeola septentrionalis (orchidaceae). Bot Mag Tokyo 104:275–281

    Google Scholar 

  • McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Google Scholar 

  • McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchid–fungus fidelity: a marriage meant to last? Ecology 87:903–911

    Google Scholar 

  • McCormick MK, Taylor DL, Juhaszova K, Burnett RK Jr, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    Google Scholar 

  • Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpoor PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis, Part 3, Chemical Methods, SSSA Book Ser N 5. SSSA, Madison, pp 1123–1184

    Google Scholar 

  • MycoBank (2020) MycoBank database. Fungal Databases, Nomenclature and Species Banks. https://www.mycobank.org/defaultinfo.aspx?Page=Home. Accessed 12 May 2019

  • Narisawa K, Ohki T, Hashib T (2000) Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 49:141–146

    Google Scholar 

  • Nomura N, Tsujita YO, Gale SW, Maeda A, Umata H, Hosaka K, Yukawa T (2013) The rare terrestrial orchid Nervilia nipponica consistently associates with a single group of novel mycobionts. J Plant Res 126:613–623

    CAS  Google Scholar 

  • Ochora J, Stock WD, Linder HP, Newton LE (2001) Symbiotic seed germination in twelve Kenyan orchid species. System Geogr Plants 71:585–596

    Google Scholar 

  • Oja J, Bahram M, Tedersoo L, Kull T, Kõljalg U (2015) Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol 205:1608–1618

    CAS  Google Scholar 

  • Olempska-Beer Z (2008) Asparaginase from Aspergillus niger expressed in A. niger. Chemical and Technical Assessment (CTAs) for 69th JECFA

  • Olsen SR, Sommers LE (1982) Phosphorous. In: Page AL (ed) Methods of soil analysis, Part 2, Chemical and microbiological properties, SSSA Book Ser. Nº 9. SSSA, Madison, pp 403−430

  • Otero JT, Mosquera-Espinosa AT, Flanagan NS (2013) Tropical orchid mycorrhizae: potential applications in orchid conservation, commercialization, and beyond, 4th Scientific Conference on Andean Orchids. Lankesteriana 13:57−63

  • Ovando I, Damon A, Bello R, Ambrosio D, Albores V, Adriano L, Salvador M (2005) Isolation of endophytic fungi and their potential for the tropical epiphytic orchids Cattleya skinneri, C. aurantiaca and Brassavola nodosa. Asian J Plant Sci 4:309–315

    Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA 108:13624–13629

    CAS  Google Scholar 

  • Park MS, Eimes JA, Oh SH, Suh HJ, Oh SY, Lee S, Park KH, Kwon HJ, Kim SY, Lim YW (2018) Diversity of fungi associated with roots of Calanthe orchid species in Korea. J Microbiol 56:49–55

    Google Scholar 

  • Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2012) Analysis of fungal diversity in Orchis tridentate Scopoli. Cent Eur J Biol 7:850–857

    Google Scholar 

  • Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2013) Fungi from the roots of the terrestrial photosynthetic orchid Himantoglossum adriaticum. Plant Ecol Evol 146:145–152

    Google Scholar 

  • Pecoraro L, Huang L, Caruso T, Perotto S, Girlanda M, Cai L, Liu ZJ (2017) Fungal diversity and specificity in Cephalanthera damasonium and C. longifolia (Orchidaceae) mycorrhizas. J Syst Evol 55(2):158–169

    Google Scholar 

  • Pellegrino G, Luca A, Bellusci F (2016) Relationships between orchid and fungal biodiversity: Mycorrhizal preferences in Mediterranean orchids. Plant Biosyst 150:180–189

    Google Scholar 

  • Pereira G, Romero C, Suz L, Atala C (2014) Essential mycorrhizal partners of the endemic Chilean orchids Chloraea collicensis and C. gavilu. Flora 209:5–99

    Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Rave PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    CAS  Google Scholar 

  • Porta J, López-Acevedo M, Rodriguez R (1986) Técnicas y experimentos en edafología, 2nd edn. Colegio Oficial de Ingenieros Agrónomos de Cataluña, Barcelona

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life cycle. Oikos 118:334–345

    Google Scholar 

  • Reiter N, Whitfield J, Pollard G, Bedggood W, Argall M, Dixon K, Davis B, Swarts N (2016) Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol 217:81–95

    Google Scholar 

  • Reiter N, Lawrie AC, Linde CC (2018) Matching symbiotic associations of an endangered orchid to habitat to improve conservation outcomes. Ann Bot 122:947–959

    CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  Google Scholar 

  • Ruibal MP, Peakall R, Foret S, Linde CC (2014) Development of phylogenetic markers for Sebacina (Sebacinaceae) mycorrhizal fungi associated with Australian orchids. Appl Plant Sci 2:apps1400015

    Google Scholar 

  • Saint-Denis T, Goupy J (2004) Optimization of a nitrogen analyser based on the Dumas method. Anal Chim Acta 515:191–198

    CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techl J 27:379–423

    Google Scholar 

  • Shao SC, Burgess KS, Sanders JMC, Liu Q, Fan XL, Huang H, Gao JY (2017) Using in situ symbiotic seed germination to restore over-collected medicinal orchids in Southwest China. Front Plant Sci 8:888. https://doi.org/10.3389/fpls.2017.00888

    Article  Google Scholar 

  • Shefferson RP, Weiß M, Kull T, Taylor DL (2005) High specificity generally characterises mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626

    CAS  Google Scholar 

  • Shrivastava A, Khan AA, Shrivastav A, Jain SK, Singhal PK (2012) Kinetic studies of l-asparaginase from Penicillium digitatum. Prep Biochem Biotech 42:574–581

    CAS  Google Scholar 

  • Silva FDA, Liotti RG, Boleti APDA, Reis EDM, Passos MBS, dos Santos EL, Sampaio OM, Januário AH, Branco CLB, da Silva GF, de Mandonça EAF, Soare MA (2018) Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS ONE 13:e0195874

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    CAS  Google Scholar 

  • Steinfort U, Verdugo G, Besoain X, Cisternas MA (2010) Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.)Johnst (Orchidaceae). Flora 205:811–817

    Google Scholar 

  • Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–1030

    Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis, Part 3, Chemical Methods, SSSA Book Ser N 5. SSSA, Madison, pp 1201–1229

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    CAS  Google Scholar 

  • Taylor D, Bruns T, Leake J, Read D (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. Mycorrhizal Ecol 157:375–413

    CAS  Google Scholar 

  • Tedersoo L (2017) Proposal for practical multi-kingdom classification of eukaryotes based on monophyly and comparable divergence time criteria. BioRxiv 2017:240929

    Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Koljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Google Scholar 

  • Torruella G, de Mendoza A, Grau-Bove X, Anto M, Chaplin MA, del Campo J, Eme L, Pérez-Cordón G, Whipps CM, Nichols KM, Paley R (2015) Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr Biol 25:2404–2410

    CAS  Google Scholar 

  • Tsukamoto S, Umaoka H, Yoshikawa K, Ikeda T, Hirota H (2010) Notoamide O, a structurally unprecedented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, Aspergillus sp. J Nat Prod 73:1438–1440

    CAS  Google Scholar 

  • Uspon R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2:184–186

    Google Scholar 

  • Vaz AB, Mota RC, Bomfim MRQ, Vieira ML, Zani CL, Rosa CA, Rosa LH (2009) Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol 55:1381–1391

    CAS  Google Scholar 

  • Vázquez FM (2009) Revisión de la familia Orchidaceae en Extremadura (España). Folia Bot Extremadurensis 3:5–362

    Google Scholar 

  • Vázquez FM, Blanco J, García D, Márquez F, Guerra MJ (2015) Review of Anacamptis sect Morianthus taxa from Iberian Peninsula. J Eur Orch 47:338–364

    Google Scholar 

  • Veloso J, Diaz J (2012) Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici, and induces the expression of defence genes. Plant Pathol 61:281–288

    CAS  Google Scholar 

  • Wagner MR, Lundberg DS, Coleman-Der D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild arabidopsis relative. Ecol Lett 17:717–726

    Google Scholar 

  • Walkley A, Black CA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

  • Waqas M, Khan AL, Muhammad H, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287

    CAS  Google Scholar 

  • Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:e54–e68

    Google Scholar 

  • Waud M, Brys R, Van Landuyt W, Lievens B, Jacquemyn H (2017) Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Mol Ecol 26:1687–1701

    CAS  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Google Scholar 

  • Yagame T, Yamato M, Masahiro M, Suzuki A, Iwase K (2007) Developmental processes of achlorophyllous orchid, Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus. J Plant Res 120:229–236

    Google Scholar 

  • Yagame T, Orihara T, Selosse MA, Yamato M, Iwase K (2012) Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytol 193:178–187

    CAS  Google Scholar 

  • Yagame T, Funabiki E, Nagasawa E, Fukiharu T, Iwase K (2013) Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). Am J Bot 100:1823–1830

    Google Scholar 

  • Yang B, Dong J, Lin X, Zhou X, Zhang Y, Liu Y (2014) New prenylated indole alkaloids from fungus Penicillium sp. derived of mangrove soil sample. Tetrahedron 70:3859–3863

    CAS  Google Scholar 

  • Yuan ZL, Chen YC, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microb Biot 25:295–303

    Google Scholar 

  • Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42:135–139

    Google Scholar 

  • Zhao XL, Yang JZ, Liu S, Chen CL, Zhu HY, Cao JX (2014) The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effect on growth and nutrient uptake of orchid plantlets. World J Microb Biot 30:e1993–e2003

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Mr. Tony Krupa for reviewing the English version of this paper. The authors also appreciate the constructive comments and suggestions provided by two anonymous reviewers and the editor of JPRE on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Juan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Rus, I., Pastor, J.E. & Juan, R. Fungal colonization associated with phenological stages of a photosynthetic terrestrial temperate orchid from the Southern Iberian Peninsula. J Plant Res 133, 807–825 (2020). https://doi.org/10.1007/s10265-020-01225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01225-9

Keywords

Navigation