Dual colonization of Mucoromycotina and Glomeromycotina fungi in the basal liverwort, Haplomitrium mnioides (Haplomitriopsida)
Abstract
In general, Glomeromycotina was thought to be the earliest fungi forming mycorrhiza-like structure (MLS) in land plant evolution. In contrast, because the earliest divergent lineage of extant land plants, i.e. Haplomitriopsida liverworts, associates only with Mucoromycotina mycobionts, recent studies suggested that those fungi are novel candidates for the earliest mycobionts. Therefore, Mucoromycotina–Haplomitriopsida association currently attracts attention as an ancient mycorrhiza-like association. However, mycobionts were identified in only 7 of 16 Haplomitriopsida species and the mycobionts diversity of this lineage is largely unclarified. To clarify the taxonomic composition of mycobionts in Haplomitriopsida, we observed MLSs in the rhizome of Haplomitrium mnioides (Haplomitriopsida), the Asian representative Haplomitriopsida species, and conducted molecular identification of mycobionts. It was recorded for the first time that Glomeromycotina and Mucoromycotina co-occur in Haplomitriopsida as mycobionts. Significantly, the arbuscule-like branching (ALB) of Glomeromycotina was newly described. As the Mucoromycotina fungi forming MLSs in H. mnioides, Endogonaceae and Densosporaceae were detected, in which size differences of hyphal swelling (HS) were found between the fungal families. This study provides a novel evidence in the MLS of Haplomitriopsida, i.e. the existence of Glomeromycotina association as well as the dominant Mucoromycotina association. In addition, since hyphal characteristics of the HS-type MLS were quite similar to those of fine endophytes (FE) of Endogonales in other bryophytes and vascular plants previously described, this MLS is suggested to be included in FE. These results suggest that Glomeromycotina and Mucoromycotina were acquired concurrently as the mycobionts by the earliest land plants evolved into arbuscular mycorrhizae and FE. Therefore, dual association of Haplomitriopsida, with Endogonales and Glomeromycotina will provide us novel insight on how the earliest land plants adapted to terrestrial habitats with fungi.
Keywords
Basal land plant Endogonales Fine endophyte Glomeromycotina Mucoromycotina Mycorrhizal associationNotes
Acknowledgements
We are grateful to Prof. Mitsuru Moriguchi, Dr. Takamichi Orihara, Ms. Yumiko Oba, Mr. Yoshiteru Kawabata, and Dr. Kanami Yoshino for supporting for our sampling. We are also grateful to Prof. Tomio Yamaguchi for depositing of H. mnioides specimens. We thank the technical staff in the Division of Instrumental Analysis, Research Center for Human and Environmental Sciences, Shinshu University for DNA sequencing. This study was supported in part by KAKENHI (No. JP14J09199, No. JP25291084 and JP15H01751) from the Japan Society for the Promotion of Science (JSPS).
Supplementary material
References
- Bakalin V, Vilnet A (2017) How many species are in Apotreubia S. Hatt. & Mizut. (Marchantiophyta)? Nova Hedwig 104:473–482. https://doi.org/10.1127/nova_hedwigia/2016/0386 CrossRefGoogle Scholar
- Bartholomew-Began SE (1991) A morphogenetic re-evaluation of Haplomitrium Nees (Hepatophyta). Bryophyt Bibl 41:1–297Google Scholar
- Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577. https://doi.org/10.1098/rsbl.2010.1203 CrossRefPubMedPubMedCentralGoogle Scholar
- Błaszkowski J (2012) Glomeromycota. W Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
- Carafa A, Duckett JG, Ligrone R (2003) Subterranean gametophytic axes in the primitive liverwort Haplomitrium harbour a unique type of endophytic association with aseptate fungi. New Phytol 160:185–197. https://doi.org/10.1046/j.1469-8137.2003.00849.x CrossRefGoogle Scholar
- Chang Y, Desirò A, Na H, Sandor L, Lipzen A, Clum A, Barry K, Grigoriev IV, Martin FM, Stajich JE, Smith ME, Bonito G, Spatafora JW (2019) Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol 222:511–525. https://doi.org/10.1111/nph.15613 CrossRefPubMedGoogle Scholar
- Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: a chequered history. Biol Sci, Proc R Soc B. https://doi.org/10.1098/rspb.2013.0207 CrossRefGoogle Scholar
- Desirò A, Rimington WR, Jacob A, Pol NV, Smith ME, Trappe JM, Bidartondo MI, Bonito G (2017) Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus 8:245–257. https://doi.org/10.5598/imafungus.2017.08.02.03 CrossRefPubMedPubMedCentralGoogle Scholar
- Duckett JG, Carafa A, Ligrone R (2006) A highly differentiated glomeromycotean association with the mucilage-secreting, primitive antipodean liverwort Treubia (Treubiaceae): clues to the origins of mycorrhizas. Am J Bot 93:797–813. https://doi.org/10.3732/ajb.93.6.797 CrossRefPubMedGoogle Scholar
- Edgar RC (2016) UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. https://doi.org/10.1101/074252 CrossRefGoogle Scholar
- Field KJ, Pressel S (2018) Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol 220:996–1011. https://doi.org/10.1111/nph.15158 CrossRefPubMedGoogle Scholar
- Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012) Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat Commun 3:835. https://doi.org/10.1038/ncomms1831 CrossRefPubMedGoogle Scholar
- Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI (2015a) Symbiotic options for the conquest of land. Trends Ecol Evol 30:477–486. https://doi.org/10.1016/j.tree.2015.05.007 CrossRefPubMedGoogle Scholar
- Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015b) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–756. https://doi.org/10.1111/nph.13024 CrossRefPubMedGoogle Scholar
- Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015c) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J 10:1514–1526. https://doi.org/10.1038/ismej.2015.204 CrossRefPubMedPubMedCentralGoogle Scholar
- Field KJ, Bidartondo MI, Rimington WR, Hoysted GA, Beerling D, Cameron DD, Duckett JG, Leake JR, Pressel S (2019) Functional complementarity of ancient plant-fungal mutualisms: contrasting nitrogen, phosphorus and carbon exchanges between Mucoromycotina and Glomeromycotina fungal symbionts of liverworts. New Phytol 223:908–921. https://doi.org/10.1111/nph.15819 CrossRefPubMedGoogle Scholar
- Gianinazzi-Pearson V, Morandi D, Dexheimer J, Gianinazzi S (1981) Ultrastructural and ultracytochemical features of a Glomus tenuis mycorrhiza. New Phytol 88:633–639. https://doi.org/10.1111/j.1469-8137.1981.tb01739.x CrossRefGoogle Scholar
- Goebel K (1891) Morphologische und biologische studien. IV. Über javanische Lebermoose. 1 Treubia. Ann Jard Bot Buitenzorg 9:1–11Google Scholar
- Grubb PJ (1970) Observations on the structure and biology of Haplomitrium and Takakia, hepatics with roots. New Phytol 69:303–326. https://doi.org/10.1111/j.1469-8137.1970.tb02430.x CrossRefGoogle Scholar
- Gucwa-Przepióra E, Błaszkowski J, Kurtyka R, Małkowski Ł, Małkowski E (2013) Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae) at different soil depths in highly metal-contaminated site in southern Poland. Acta Soc Bot Pol 82:251–258. https://doi.org/10.5586/asbp.2013.033 CrossRefGoogle Scholar
- Hattori S, Mizutani M (1958) What is Takakia lepidozioides? J Hattori Bot Lab 38:115–121Google Scholar
- Hirose D, Degawa Y, Yamamoto K, Yamada A (2014) Sphaerocreas pubescens is a member of the Mucoromycotina closely related to fungi associated with liverworts and hornworts. Mycoscience 55:221–226. https://doi.org/10.1016/j.myc.2013.09.002 CrossRefGoogle Scholar
- Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103. https://doi.org/10.1038/ncomms1105 CrossRefPubMedGoogle Scholar
- Inoue H (1960) Studies in Treubia nana (Hepaticae) with special reference to the antheridial development. Bot Mag Tokyo 73:225–230. https://doi.org/10.15281/jplantres1887.73.225 CrossRefGoogle Scholar
- Izumitsu K, Hatoh K, Sumita T, Kitade Y, Morita A, Gafur A, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C (2012) Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 53:396–401. https://doi.org/10.1007/S10267-012-0182-3 CrossRefGoogle Scholar
- Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488. https://doi.org/10.1016/S0953-7562(89)80195-9 CrossRefGoogle Scholar
- Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newslett 34:59Google Scholar
- Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. https://doi.org/10.1111/j.1574-6941.2008.00531.x CrossRefPubMedGoogle Scholar
- Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94:1756–1777. https://doi.org/10.3732/ajb.94.11.1756 CrossRefPubMedGoogle Scholar
- Lilienfeld F (1911) Beiträge zur kenntnis der art Haplomitrium hookeri Nees. Bull Acad Sci Crac Sér B 1911:315–339Google Scholar
- Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195. https://doi.org/10.2307/3761615 CrossRefGoogle Scholar
- Oguchi S, Sato K (2003) Springing out mechanisms to groundwater at the upper reaches of rivers of Mt. Higashiyama, Hachijo-jima Island. Proc Inst Nat Sci Nihon Univ 38:233–242Google Scholar
- Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. https://doi.org/10.1111/j.1469-8137.2010.03334.x CrossRefPubMedGoogle Scholar
- Orchard S, Standish RJ, Nicol D, Gupta VVSR, Ryan MH (2016) The response of fine root endophyte (Glomus tenue) to waterlogging is dependent on host plant species and soil type. Plant Soil 403:305–315. https://doi.org/10.1007/s11104-016-2804-6 CrossRefGoogle Scholar
- Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D, Monk J, Simonin A, Ryan MH (2017a) Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol 213:481–486. https://doi.org/10.1111/nph.14268 CrossRefPubMedGoogle Scholar
- Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D, Ryan MH (2017b) Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27:619–638. https://doi.org/10.1007/s00572-017-0782-z CrossRefPubMedGoogle Scholar
- Postma JWM, Olsson PA, Falkengren-Grerup U (2007) Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biol Biochem 39:400–408. https://doi.org/10.1016/j.soilbio.2006.08.007 CrossRefGoogle Scholar
- Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921. https://doi.org/10.1126/science.289.5486.1920 CrossRefPubMedGoogle Scholar
- Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI (2018) Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Biol Sci, Proc R Soc B. https://doi.org/10.1098/rspb.2018.1600 CrossRefGoogle Scholar
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
- Shi XQ, Zhu RL (2006) A range extension for Haplomitrium mnioides (Lindb.) R.M.Schust. Trop Bryol 27:87–90. https://doi.org/10.11646/bde.27.1.11 CrossRefGoogle Scholar
- Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337. https://doi.org/10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
- Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69. https://doi.org/10.1038/363067a0 CrossRefGoogle Scholar
- Smit E, Leeflang P, Glandorf B, Van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621PubMedPubMedCentralGoogle Scholar
- Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, CambridgeGoogle Scholar
- Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny D, Gradstein SR, He X, Heinrichs J, Hentschel J, Ilkiu-Borges AL, Katagiri T, Konstantinova NA, Larraín J, Long DG, Nebel M, Pócs T, Puche F, Reiner-Drehwald E, Renner MA, Sass-Gyarmati A, Schäfer-Verwimp A, Moragues JG, Stotler RE, Sukkharak P, Thiers BM, Uribe J, Váňa J, Villarreal JC, Wigginton M, Zhang L, Zhu RL (2016) World checklist of hornworts and liverworts. PhytoKeys 27:1–828. https://doi.org/10.3897/phytokeys.59.6261 CrossRefGoogle Scholar
- Stahl M (1949) Die Mycorrhiza der Lebermoose mit besonderer Berucksichtigung der thallosen formen. Planta 37:103–148. https://doi.org/10.1007/BF01929705 CrossRefGoogle Scholar
- Stech M, Frey W (2004) Molecular circumscription and relationships of selected Gondwanan species of Haplomitrium (Calobryales, Haplomitriopsida, Hepaticophytina). Studies in austral temperate rain forest bryophytes 24. Nova Hedwig 78:57–70. https://doi.org/10.1127/0029-5035/2004/0078-0057 CrossRefGoogle Scholar
- Stevens KJ, Wall CB, Janssen JA (2011) Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza 21:279–288. https://doi.org/10.1007/s00572-010-0334-2 CrossRefPubMedGoogle Scholar
- Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult J-P, Strullu D-G (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses. New Phytol 203:964–979. https://doi.org/10.1111/nph.12805 CrossRefPubMedGoogle Scholar
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
- Turnau K, Ronikier M, Unrug J (1999) Role of mycorrhizal links between plants in establishment of liverworts thalli in natural habitat. Acta Soc Bot Pol 68:63–68. https://doi.org/10.5586/asbp.1999.011 CrossRefGoogle Scholar
- Walker C, Gollotte A, Redecker D (2018) A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213–219. https://doi.org/10.1007/s00572-017-0815-7 CrossRefPubMedGoogle Scholar
- Wang GM, Stribley DP, Tinker PB (1985) Soil pH and vesicular-arbuscular mycorrhizas. In: Fitter AH (ed) Ecological interactions in soil: plants, microbes and animals. Blackwell Scientific, Oxford, pp 219–224Google Scholar
- Wang B, Yeun LH, Zue J-Y, Liu Y, Ané J-M, Qiu Y-L (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525. https://doi.org/10.1111/j.1469-8137.2009.03137.x CrossRefPubMedGoogle Scholar
- White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
- Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA Sequences. Appl Environ Microbiol 78:717–725. https://doi.org/10.1128/AEM.06516-11 CrossRefPubMedPubMedCentralGoogle Scholar
- Yamamoto K, Degawa Y, Hirose D, Fukuda M, Yamada A (2015) Morphology and phylogeny of four Endogone species and Sphaerocreas pubescens collected in Japan. Mycol Prog 14:86. https://doi.org/10.1007/s11557-015-1111-6 CrossRefGoogle Scholar
- Yamamoto K, Degawa Y, Takashima Y, Fukuda M, Yamada A (2017a) Endogone corticioides sp. nov. from subalpine conifer forests in Japan and China, and its multi-locus phylogeny. Mycoscience 58:23–29. https://doi.org/10.1016/j.myc.2016.08.001 CrossRefGoogle Scholar
- Yamamoto K, Endo N, Degawa Y, Fukuda M, Yamada A (2017b) First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza 27:295–301. https://doi.org/10.1007/s00572-016-0740-1 CrossRefPubMedGoogle Scholar