Journal of Plant Research

, Volume 132, Issue 6, pp 777–788 | Cite as

Dual colonization of Mucoromycotina and Glomeromycotina fungi in the basal liverwort, Haplomitrium mnioides (Haplomitriopsida)

  • Kohei Yamamoto
  • Masaki Shimamura
  • Yousuke Degawa
  • Akiyoshi YamadaEmail author
Regular Paper


In general, Glomeromycotina was thought to be the earliest fungi forming mycorrhiza-like structure (MLS) in land plant evolution. In contrast, because the earliest divergent lineage of extant land plants, i.e. Haplomitriopsida liverworts, associates only with Mucoromycotina mycobionts, recent studies suggested that those fungi are novel candidates for the earliest mycobionts. Therefore, Mucoromycotina–Haplomitriopsida association currently attracts attention as an ancient mycorrhiza-like association. However, mycobionts were identified in only 7 of 16 Haplomitriopsida species and the mycobionts diversity of this lineage is largely unclarified. To clarify the taxonomic composition of mycobionts in Haplomitriopsida, we observed MLSs in the rhizome of Haplomitrium mnioides (Haplomitriopsida), the Asian representative Haplomitriopsida species, and conducted molecular identification of mycobionts. It was recorded for the first time that Glomeromycotina and Mucoromycotina co-occur in Haplomitriopsida as mycobionts. Significantly, the arbuscule-like branching (ALB) of Glomeromycotina was newly described. As the Mucoromycotina fungi forming MLSs in H. mnioides, Endogonaceae and Densosporaceae were detected, in which size differences of hyphal swelling (HS) were found between the fungal families. This study provides a novel evidence in the MLS of Haplomitriopsida, i.e. the existence of Glomeromycotina association as well as the dominant Mucoromycotina association. In addition, since hyphal characteristics of the HS-type MLS were quite similar to those of fine endophytes (FE) of Endogonales in other bryophytes and vascular plants previously described, this MLS is suggested to be included in FE. These results suggest that Glomeromycotina and Mucoromycotina were acquired concurrently as the mycobionts by the earliest land plants evolved into arbuscular mycorrhizae and FE. Therefore, dual association of Haplomitriopsida, with Endogonales and Glomeromycotina will provide us novel insight on how the earliest land plants adapted to terrestrial habitats with fungi.


Basal land plant Endogonales Fine endophyte Glomeromycotina Mucoromycotina Mycorrhizal association 



We are grateful to Prof. Mitsuru Moriguchi, Dr. Takamichi Orihara, Ms. Yumiko Oba, Mr. Yoshiteru Kawabata, and Dr. Kanami Yoshino for supporting for our sampling. We are also grateful to Prof. Tomio Yamaguchi for depositing of H. mnioides specimens. We thank the technical staff in the Division of Instrumental Analysis, Research Center for Human and Environmental Sciences, Shinshu University for DNA sequencing. This study was supported in part by KAKENHI (No. JP14J09199, No. JP25291084 and JP15H01751) from the Japan Society for the Promotion of Science (JSPS).

Supplementary material

10265_2019_1145_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2113 kb)


  1. Bakalin V, Vilnet A (2017) How many species are in Apotreubia S. Hatt. & Mizut. (Marchantiophyta)? Nova Hedwig 104:473–482. CrossRefGoogle Scholar
  2. Bartholomew-Began SE (1991) A morphogenetic re-evaluation of Haplomitrium Nees (Hepatophyta). Bryophyt Bibl 41:1–297Google Scholar
  3. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Błaszkowski J (2012) Glomeromycota. W Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  5. Carafa A, Duckett JG, Ligrone R (2003) Subterranean gametophytic axes in the primitive liverwort Haplomitrium harbour a unique type of endophytic association with aseptate fungi. New Phytol 160:185–197. CrossRefGoogle Scholar
  6. Chang Y, Desirò A, Na H, Sandor L, Lipzen A, Clum A, Barry K, Grigoriev IV, Martin FM, Stajich JE, Smith ME, Bonito G, Spatafora JW (2019) Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol 222:511–525. CrossRefPubMedGoogle Scholar
  7. Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: a chequered history. Biol Sci, Proc R Soc B. CrossRefGoogle Scholar
  8. Desirò A, Rimington WR, Jacob A, Pol NV, Smith ME, Trappe JM, Bidartondo MI, Bonito G (2017) Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus 8:245–257. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duckett JG, Carafa A, Ligrone R (2006) A highly differentiated glomeromycotean association with the mucilage-secreting, primitive antipodean liverwort Treubia (Treubiaceae): clues to the origins of mycorrhizas. Am J Bot 93:797–813. CrossRefPubMedGoogle Scholar
  10. Edgar RC (2016) UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv. CrossRefGoogle Scholar
  11. Field KJ, Pressel S (2018) Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol 220:996–1011. CrossRefPubMedGoogle Scholar
  12. Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012) Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat Commun 3:835. CrossRefPubMedGoogle Scholar
  13. Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI (2015a) Symbiotic options for the conquest of land. Trends Ecol Evol 30:477–486. CrossRefPubMedGoogle Scholar
  14. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015b) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–756. CrossRefPubMedGoogle Scholar
  15. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015c) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J 10:1514–1526. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Field KJ, Bidartondo MI, Rimington WR, Hoysted GA, Beerling D, Cameron DD, Duckett JG, Leake JR, Pressel S (2019) Functional complementarity of ancient plant-fungal mutualisms: contrasting nitrogen, phosphorus and carbon exchanges between Mucoromycotina and Glomeromycotina fungal symbionts of liverworts. New Phytol 223:908–921. CrossRefPubMedGoogle Scholar
  17. Gianinazzi-Pearson V, Morandi D, Dexheimer J, Gianinazzi S (1981) Ultrastructural and ultracytochemical features of a Glomus tenuis mycorrhiza. New Phytol 88:633–639. CrossRefGoogle Scholar
  18. Goebel K (1891) Morphologische und biologische studien. IV. Über javanische Lebermoose. 1 Treubia. Ann Jard Bot Buitenzorg 9:1–11Google Scholar
  19. Grubb PJ (1970) Observations on the structure and biology of Haplomitrium and Takakia, hepatics with roots. New Phytol 69:303–326. CrossRefGoogle Scholar
  20. Gucwa-Przepióra E, Błaszkowski J, Kurtyka R, Małkowski Ł, Małkowski E (2013) Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae) at different soil depths in highly metal-contaminated site in southern Poland. Acta Soc Bot Pol 82:251–258. CrossRefGoogle Scholar
  21. Hattori S, Mizutani M (1958) What is Takakia lepidozioides? J Hattori Bot Lab 38:115–121Google Scholar
  22. Hirose D, Degawa Y, Yamamoto K, Yamada A (2014) Sphaerocreas pubescens is a member of the Mucoromycotina closely related to fungi associated with liverworts and hornworts. Mycoscience 55:221–226. CrossRefGoogle Scholar
  23. Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103. CrossRefPubMedGoogle Scholar
  24. Inoue H (1960) Studies in Treubia nana (Hepaticae) with special reference to the antheridial development. Bot Mag Tokyo 73:225–230. CrossRefGoogle Scholar
  25. Izumitsu K, Hatoh K, Sumita T, Kitade Y, Morita A, Gafur A, Ohta A, Kawai M, Yamanaka T, Neda H, Ota Y, Tanaka C (2012) Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 53:396–401. CrossRefGoogle Scholar
  26. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488. CrossRefGoogle Scholar
  27. Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newslett 34:59Google Scholar
  28. Lee J, Lee S, Young JP (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. CrossRefPubMedGoogle Scholar
  29. Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94:1756–1777. CrossRefPubMedGoogle Scholar
  30. Lilienfeld F (1911) Beiträge zur kenntnis der art Haplomitrium hookeri Nees. Bull Acad Sci Crac Sér B 1911:315–339Google Scholar
  31. Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195. CrossRefGoogle Scholar
  32. Oguchi S, Sato K (2003) Springing out mechanisms to groundwater at the upper reaches of rivers of Mt. Higashiyama, Hachijo-jima Island. Proc Inst Nat Sci Nihon Univ 38:233–242Google Scholar
  33. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. CrossRefPubMedGoogle Scholar
  34. Orchard S, Standish RJ, Nicol D, Gupta VVSR, Ryan MH (2016) The response of fine root endophyte (Glomus tenue) to waterlogging is dependent on host plant species and soil type. Plant Soil 403:305–315. CrossRefGoogle Scholar
  35. Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D, Monk J, Simonin A, Ryan MH (2017a) Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol 213:481–486. CrossRefPubMedGoogle Scholar
  36. Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D, Ryan MH (2017b) Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27:619–638. CrossRefPubMedGoogle Scholar
  37. Postma JWM, Olsson PA, Falkengren-Grerup U (2007) Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biol Biochem 39:400–408. CrossRefGoogle Scholar
  38. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921. CrossRefPubMedGoogle Scholar
  39. Rimington WR, Pressel S, Duckett JG, Field KJ, Read DJ, Bidartondo MI (2018) Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Biol Sci, Proc R Soc B. CrossRefGoogle Scholar
  40. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shi XQ, Zhu RL (2006) A range extension for Haplomitrium mnioides (Lindb.) R.M.Schust. Trop Bryol 27:87–90. CrossRefGoogle Scholar
  42. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337. CrossRefGoogle Scholar
  43. Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69. CrossRefGoogle Scholar
  44. Smit E, Leeflang P, Glandorf B, Van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621PubMedPubMedCentralGoogle Scholar
  45. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, CambridgeGoogle Scholar
  46. Söderström L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny D, Gradstein SR, He X, Heinrichs J, Hentschel J, Ilkiu-Borges AL, Katagiri T, Konstantinova NA, Larraín J, Long DG, Nebel M, Pócs T, Puche F, Reiner-Drehwald E, Renner MA, Sass-Gyarmati A, Schäfer-Verwimp A, Moragues JG, Stotler RE, Sukkharak P, Thiers BM, Uribe J, Váňa J, Villarreal JC, Wigginton M, Zhang L, Zhu RL (2016) World checklist of hornworts and liverworts. PhytoKeys 27:1–828. CrossRefGoogle Scholar
  47. Stahl M (1949) Die Mycorrhiza der Lebermoose mit besonderer Berucksichtigung der thallosen formen. Planta 37:103–148. CrossRefGoogle Scholar
  48. Stech M, Frey W (2004) Molecular circumscription and relationships of selected Gondwanan species of Haplomitrium (Calobryales, Haplomitriopsida, Hepaticophytina). Studies in austral temperate rain forest bryophytes 24. Nova Hedwig 78:57–70. CrossRefGoogle Scholar
  49. Stevens KJ, Wall CB, Janssen JA (2011) Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza 21:279–288. CrossRefPubMedGoogle Scholar
  50. Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult J-P, Strullu D-G (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses. New Phytol 203:964–979. CrossRefPubMedGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Turnau K, Ronikier M, Unrug J (1999) Role of mycorrhizal links between plants in establishment of liverworts thalli in natural habitat. Acta Soc Bot Pol 68:63–68. CrossRefGoogle Scholar
  53. Walker C, Gollotte A, Redecker D (2018) A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213–219. CrossRefPubMedGoogle Scholar
  54. Wang GM, Stribley DP, Tinker PB (1985) Soil pH and vesicular-arbuscular mycorrhizas. In: Fitter AH (ed) Ecological interactions in soil: plants, microbes and animals. Blackwell Scientific, Oxford, pp 219–224Google Scholar
  55. Wang B, Yeun LH, Zue J-Y, Liu Y, Ané J-M, Qiu Y-L (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525. CrossRefPubMedGoogle Scholar
  56. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  57. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA Sequences. Appl Environ Microbiol 78:717–725. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamamoto K, Degawa Y, Hirose D, Fukuda M, Yamada A (2015) Morphology and phylogeny of four Endogone species and Sphaerocreas pubescens collected in Japan. Mycol Prog 14:86. CrossRefGoogle Scholar
  59. Yamamoto K, Degawa Y, Takashima Y, Fukuda M, Yamada A (2017a) Endogone corticioides sp. nov. from subalpine conifer forests in Japan and China, and its multi-locus phylogeny. Mycoscience 58:23–29. CrossRefGoogle Scholar
  60. Yamamoto K, Endo N, Degawa Y, Fukuda M, Yamada A (2017b) First detection of Endogone ectomycorrhizas in natural oak forests. Mycorrhiza 27:295–301. CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Kohei Yamamoto
    • 1
  • Masaki Shimamura
    • 2
  • Yousuke Degawa
    • 3
  • Akiyoshi Yamada
    • 1
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and TechnologyShinshu UniversityNaganoJapan
  2. 2.Department of Biology, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Sugadaira Research Station, Mountain Science CenterUniversity of TsukubaUedaJapan
  4. 4.Department of Bioscience and Biotechnology, Faculty of AgricultureShinshu UniversityNaganoJapan
  5. 5.Research Center for Fungal and Microbial DynamismShinshu UniversityNaganoJapan
  6. 6.Division of Terrestrial Ecosystem, Institute of Mountain ScienceShinshu UniversityNaganoJapan

Personalised recommendations