Strong genetic structure revealed by microsatellite variation in Callicarpa species endemic to the Bonin (Ogasawara) Islands

Abstract

Adaptive radiation is the diversification of a founding population into multiple taxa that are differentially adapted to diverse ecological niches. The three Callicarpa (Lamiaceae) species endemic to the Bonin Islands are considered to represent an example of adaptive radiation on oceanic islands. All three species are distributed in the Chichijima Island Group and grow in different habitats, while only one species, C. subpubescens, is distributed among other island groups. Particularly, in the Hahajima and Mukojima Island Groups, C. subpubescens grows in various habitats and shows relatively high morphological variation. We investigated genotypes of the three Callicarpa species at 14 microsatellite markers to elucidate genetic differentiation within and between species or island groups and between different habitats or morphologies. We found that genetic differentiation within C. subpubescens in the Hahajima and Mukojima Island Groups was equally as high as that between the three species in the Chichijima Island Group, while differentiation within C. subpubescens in the Chichijima Island Group was much lower. Analyses such as a Bayesian clustering analysis showed that genetically distinct groups were associated with the three species in the Chichijima Island Group, whereas they showed strong genetic structure within C. subpubescens in the Hahajima and Mukojima Island Groups among different habitats and morphologies. These results indicated that ecological diversification occurred in the Hahajima and Mukojima Island Groups. Meanwhile, high genetic differentiation among different island groups was also observed, reflecting isolation by distance. It implies that non-ecological factors such as geographic isolation also played important roles in genetic differentiation in Callicarpa species in the Bonin Islands. These findings suggest that the Callicarpa species in the Bonin Islands are differentiated into multiple genetic groups by both ecological and non-ecological factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson B, Alexandersson R, Johnson SD (2010) Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution 64:960–972. https://doi.org/10.1111/j.1558-5646.2009.00880.x

    Article  PubMed  Google Scholar 

  2. Barrett SCH (1996) The reproductive biology and genetics of island plants. Philos Trans R Soc Lond B Biol Sci 351:725–733. https://doi.org/10.1098/rstb.1996.0067

    Article  Google Scholar 

  3. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Massachusetts

    Google Scholar 

  4. Crosby JL (1970) The evolution of genetic discontinuity: computer models of the selection of barriers to interbreeding between subspecies. Heredity 25:253–297. https://doi.org/10.1038/hdy.1970.30

    Article  Google Scholar 

  5. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  6. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree Argania spinosa (L) Skeels endemic to Morocco. Theor Appl Genet 92:832–839. https://doi.org/10.1007/BF00221895

    Article  PubMed  Google Scholar 

  7. Emerson BC (2002) Evolution on oceanic islands: molecular phylogenetic approaches to understanding pattern and process. Mol Ecol 11:951–966. https://doi.org/10.1046/j.1365-294X.2002.01507.x

    CAS  Article  PubMed  Google Scholar 

  8. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  9. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. https://doi.org/10.1177/117693430500100003

    CAS  Article  Google Scholar 

  10. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Friar EA, Prince LM, Roalson EH, McGlaughlin ME, Cruse-Sanders JM, De Groot SJ, Porter JM (2006) Ecological speciation in the East Maui-endemic Dubautia (Asteraceae) species. Evolution 60:1777–1792. https://doi.org/10.1111/j.0014-3820.2006.tb00522.x

    Article  PubMed  Google Scholar 

  13. Gavrilets S, Vose A (2007) Case studies and mathematical models of ecological speciation. 2. Palms on an oceanic island. Mol Ecol 16:2910–2921. https://doi.org/10.1111/j.1365-294X.2007.03304.x

    Article  PubMed  Google Scholar 

  14. Gillespie RG, Howarth FG, Roderick GK (2001) Adaptive Radiation. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic Press, New York, pp 25–44

    Google Scholar 

  15. Givnish TJ (1997) Adaptive radiation and molecular systematics: issues and approaches. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, pp 1–54

    Google Scholar 

  16. Givnish TJ (2010) Ecology of plant speciation. Taxon 59:1326–1366. https://doi.org/10.1002/tax.595003

    Article  Google Scholar 

  17. Goudet J (2002) Fstat v2. 9.3.2. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed July 2018

  18. Ito M, Ono M (1990) Allozyme diversity and the evolution of Crepidiastrum (Compositae) on the Bonin (Ogasawara) Islands. Bot Mag Tokyo 103:449–459. https://doi.org/10.1007/BF02491263

    CAS  Article  Google Scholar 

  19. Ito M, Soejima A, Ono M (1997) Allozyme diversity of Pittosporum (Pittosporaceae) on the Bonin (Ogasawara) Islands. J Plant Res 110:455–462. https://doi.org/10.1007/BF02506806

    CAS  Article  Google Scholar 

  20. Ito M, Soejima A, Ono M (1998) Genetic diversity of the endemic plants of the Bonin (Ogasawara) Islands. In: Stuessy TF, Ono M (eds) Evolution and speciation of island plants. Cambridge University Press, Cambridge, pp 141–154

    Google Scholar 

  21. Izuno A, Kitayama K, Onoda Y, Tsujii Y, Hatakeyama M, Nagano AJ, Honjo MN, Shimizu-Inatsugi R, Kudoh H, Shimizu KK, Isagi Y (2017) The population genomic signature of environmental association and gene flow in an ecologically divergent tree species Metrosideros polymorpha (Myrtaceae). Mol Ecol 26:1515–1532. https://doi.org/10.1111/mec.14016

    CAS  Article  PubMed  Google Scholar 

  22. Kato M, Shibata A, Yasui T, Nagamasu H (1999) Impact of introduced honeybees, Apis mellifera, upon native bee communities in the Bonin (Ogasawara) Islands. Res Popul Ecol 41:217–228. https://doi.org/10.1007/s101440050025

    Article  Google Scholar 

  23. Kawakubo N (1986) Morphological variation of three endemic species of Callicarpa (Verbenaceae) in the Bonin (Ogasawara) Islands. Plant Species Biol 1:59–68

    Article  Google Scholar 

  24. Kawakubo N (1990) Dioecism of the genus Callicarpa (Verbenaceae) in the Bonin (Ogasawara) Islands. Bot Mag Tokyo 103:57–66. https://doi.org/10.1111/j.1442-1984.1986.tb00015.x

    Article  Google Scholar 

  25. Kawakubo N (1998) Evolution of cryptic dioecy in Callicarpa (Verbenaceae) on the Bonin Islands. In: Stuessy TF, Ono M (eds) Evolution and speciation of island plants. Cambridge University Press, Cambridge, pp 155–168

    Google Scholar 

  26. Kitayama K, Pattison R, Cordell S, Webb D, Mueller-Dombois D (1997) Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud. (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. Ann Bot 80:491–497. https://doi.org/10.1006/anbo.1996.0473

    Article  Google Scholar 

  27. Kobayashi S (1978) A list of the vascular plants occurring in the Ogasawara (Bonin) Islands. Ogasawara Res 1:1–33

    Google Scholar 

  28. Langella O (1999) Populations, 1.2.30. http://bioinformatics.org/populations/. Accessed July 2018

  29. Losos JB, Jackman TR, Larson A, de Queiroz K, Rodriguez-Schettino L (1998) Contingency and determinism in replicated adaptive radiations of island lizards. Science 279:2115–2118. https://doi.org/10.1126/science.279.5359.2115

    CAS  Article  PubMed  Google Scholar 

  30. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  31. Marques I, Rossello-Graell A, Draper D, Iriondo JM (2007) Pollination patterns limit hybridization between two sympatric species of Narcissus (Amaryllidaceae). Am J Bot 94:1352–1359. https://doi.org/10.3732/ajb.94.8.1352

    Article  PubMed  Google Scholar 

  32. Martin NH, Willis JH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61:68–82. https://doi.org/10.1111/j.1558-5646.2007.00006.x

    Article  PubMed  Google Scholar 

  33. Ministry of the Environment Government of Japan (2018) Red list 2018 on Ministry of the Environment, Government of Japan. https://www.env.go.jp/press/files/jp/109278.pdf. Accessed 11 Oct 2018 (in Japanese)

  34. Mori K, Kaneko S, Isagi Y, Murakami N, Kato H (2008) Isolation and characterization of 10 microsatellite loci in Callicarpa subpubescens (Verbenaceae), an endemic species of the Bonin Islands. Mol Ecol Resour 8:1423–1425. https://doi.org/10.1111/j.1755-0998.2008.02194.x

    CAS  Article  PubMed  Google Scholar 

  35. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    CAS  Article  Google Scholar 

  36. Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719. https://doi.org/10.1554/04-428

    Article  PubMed  Google Scholar 

  37. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x

    CAS  Article  PubMed  Google Scholar 

  38. Ono M (1991) The flora of the Bonin (Ogasawara) Islands. Aliso 13:95–105. https://doi.org/10.5642/aliso.19911301.04

    Article  Google Scholar 

  39. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rundell RJ, Price TD (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol 24:394–399. https://doi.org/10.1016/j.tree.2009.02.007

    Article  PubMed  Google Scholar 

  43. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x

    Article  Google Scholar 

  44. Sakaguchi S, Horie K, Ishikawa N, Nagano AJ, Yasugi M, Kudoh H, Ito M (2017) Simultaneous evaluation of the effects of geographic, environmental and temporal isolation in ecotypic populations of Solidago virgaurea. New Phytol 216:1268–1280. https://doi.org/10.1111/nph.14744

    CAS  Article  PubMed  Google Scholar 

  45. Saro I, Gonzalez-Perez MA, Garcia-Verdugo C, Sosa PA (2015) Patterns of genetic diversity in Phoenix canariensis, a widespread oceanic palm (species) endemic from the Canarian archipelago. Tree Genet Genomes 11:815. https://doi.org/10.1007/s11295-014-0815-0

    Article  Google Scholar 

  46. Savolainen V, Anstett MC, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ (2006) Sympatric speciation in palms on an oceanic island. Nature 441:210–213. https://doi.org/10.1038/nature04566

    CAS  Article  PubMed  Google Scholar 

  47. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  48. Shimizu Y, Tabata H (1991) Forest structures, composition, and distribution on a Pacific island, with reference to ecological release and speciation. Pac Sci 45:28–49

    Google Scholar 

  49. Soejima A, Nagamasu H, Ito M, Ono M (1994) Allozyme diversity and the evolution of Symplocos (Symplocaceae) on the Bonin (Ogasawara) Islands. J Plant Res 107:221–227. https://doi.org/10.1007/BF02344248

    Article  Google Scholar 

  50. Stam P (1983) The evolution of reproductive isolation in closely adjacent plant populations through differential flowering time. Heredity 50:105–118. https://doi.org/10.1038/hdy.1983.13

    Article  Google Scholar 

  51. Sugai K, Setsuko S, Nagamitsu T, Murakami N, Kato H, Yoshimaru H (2013) Genetic differentiation in Elaeocarpus photiniifolia (Elaeocarpaceae) associated with geographic distribution and habitat variation in the Bonin (Ogasawara) Islands. J Plant Res 126:763–774. https://doi.org/10.1007/s10265-013-0571-5

    Article  PubMed  Google Scholar 

  52. Takayama K, Sun BY, Stuessy TF (2013) Anagenetic speciation in Ullung Island, Korea: genetic diversity and structure in the island endemic species, Acer takesimense (Sapindaceae). J Plant Res 126:323–333. https://doi.org/10.1007/s10265-012-0529-z

    Article  PubMed  Google Scholar 

  53. Takayama K, Lopez-Sepulveda P, Greimler J, Crawford DJ, Penailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Novoa P, Novak J, Stuessy TF (2015) Genetic consequences of cladogenetic vs anagenetic speciation in endemic plants of oceanic islands. Aob Plants. https://doi.org/10.1093/aobpla/plv102

    Article  PubMed  PubMed Central  Google Scholar 

  54. R Core Team (2017) R: a language and environment for statistical computing, version 3.4.3. R Foundation for Statistical Computing, Vienna

  55. Tokyo Metropolitan Government (2011) 2011 Red list of threatened species in Tokyo: Islands version, Tokyo (in Japanese)

  56. Tsuneki S, Kato H, Murakami N (2014) Ecological and genetic differentiation in Persea boninensis (Lauraceae) endemic to the Bonin (Ogasawara) Islands. Plant Species Biol 29:16–24. https://doi.org/10.1111/j.1442-1984.2012.00383.x

    Article  Google Scholar 

  57. Van Dijk P, Bijlsma R (1994) Simulations of flowerin time displacement between 2 cytotypes that form inviable hybrids. Heredity 72:522–535. https://doi.org/10.1038/hdy.1994.70

    Article  Google Scholar 

  58. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  59. Whittaker RJ, Fernandez-Palacios JM (2007) Island evolution. In: Whittaker RJ, Fernandez-Palacios JM (eds) Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford, pp 165–248

    Google Scholar 

  60. Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamazaki T (1993) Callicarpa L. In: Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (eds) Flora of Japan IIIa. Kodansha Ltd., Tokyo, pp 264–268

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Science Research (20241056 to HK and NM, 18370038 to HK) from the Japanese Society for Promotion of Science and an intramural grant from the Faculty of Life and Environmental Sciences in Shimane University. We thank Drs. Y. Isagi, S. Kaneko, and S. Setsuko for valuable comments. We are also grateful to Tokyo Metropolitan Government, Ministry of Environmental Government of Japan, and Forestry Agency of Japan for allowing us to perform this study. We would like to thank Enago (http://www.enago.jp) for the English language review and the two anonymous reviewers for their valuable suggestions. This research was conducted using Tokyo Metropolitan University Ogasawara Field Research Station.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyoko Sugai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sugai, K., Mori, K., Murakami, N. et al. Strong genetic structure revealed by microsatellite variation in Callicarpa species endemic to the Bonin (Ogasawara) Islands. J Plant Res 132, 759–775 (2019). https://doi.org/10.1007/s10265-019-01144-4

Download citation

Keywords

  • Adaptive radiation
  • Bonin (Ogasawara) Islands
  • Ecological diversification
  • Genetic differentiation
  • Genetic structure
  • Microsatellite markers