Skip to main content
Log in

Molecular characterization of mimosinase and cystathionine β-lyase in the Mimosoideae subfamily member Mimosa pudica

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Mimosinase degrades the non-protein amino acid mimosine and is thought to have evolved from cystathionine β-lyase (CBL) via gene duplication. However, no study has, to date, compared the molecular characteristics of mimosinase and CBL. We therefore cloned mimosinase and CBL from the Mimosoideae subfamily member Mimosa pudica (Mp) and explored the molecular relationship between mimosinase and CBL for the first time. The recombinant Mp mimosinase degraded both mimosine and cystathionine with a much higher turnover number (kcat) for mimosine compared with cystathionine, and Mp CBL utilized only cystathionine as a substrate. The critical residues implicated in the substrate binding of Arabidopsis thaliana CBL (Tyr-127, Arg-129, Tyr-181, and Arg-440) were highly conserved in both Mp mimosinase and CBL. However, homology modeling and molecular simulation of these enzymes predicted variations in the residues that interact with substrates. A mutation experiment on Mp mimosinase revealed that the disruption of a disulfide bond in the vicinity of the pyridoxal-5′-phosphate domain increased the enzyme’s preference toward cystathionine. Treatment of Mp mimosinase with a disulfide-cleavage agent also decreased mimosinase activity. Furthermore, mutation near the conserved binding residue altered the substrate preference between mimosine and cystathionine. Molecular dynamics simulations of Mp mimosinase suggested a closer coordination of the residues that interact with mimosine at the active site compared with cystathionine, indicating a more compact pocket size for mimosine degradation. This study thus may provide new insights into the molecular diversification of CBL, a C–S lyase, into the C–N lyase mimosinase in the Mimosoideae subfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander FW, Sandmeier E, Mehta PK, Christen P (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem 219:953–960

    Article  CAS  PubMed  Google Scholar 

  • Breitinger U, Clausen T, Ehlert S, Huber R, Laber B, Schmidt F, Pohl E, Messerschmidt A (2001) The three-dimensional structure of cystathionine beta-lyase from Arabidopsis and its substrate specificity. Plant Physiol 126:631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai TT, Ooh KF, Ooi PW, Chue PS, Wong FC (2013) Leucaena leucocephala leachate compromised membrane integrity, respiration and antioxidative defence of water hyacinth leaf tissues. Bot Stud 54:8. https://doi.org/10.1186/1999-3110-54-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L (1960) The effect of mimosine on alkaline phosphatase of mouse kidney. J Formos Med Assoc 59:108–114

    Google Scholar 

  • Chou CH, Kuo YL (1986) Allelopathic research of subtropical vegetation in Taiwan: III. Allelopathic exclusion of understory by Leucaena leucocephala (Lam.) de Wit. J Chem Ecol 12:1431–1448. https://doi.org/10.1007/BF01012362

    Article  CAS  PubMed  Google Scholar 

  • Crounse RG, Maxwell JD, Blank H (1962) Inhibition of growth of hair by mimosine. Nature 194:694–695

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Gold B, Vishwanatha JK, Rhode SL (1994) Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 205:210–216

    Article  CAS  PubMed  Google Scholar 

  • Dewreede S, Wayman O (1970) Effect of mimosine on the rat fetus. Teratology 3:21–27

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Arnold RJ, Yang Y, Park MH, Hrncirova P, Mechref Y, Novotny MV, Zhang JT (2005) Modulation of differentiation-related gene 1 expression by cell cycle blocker mimosine, revealed by proteomic analysis. Mol Cell Proteom 4:993–1001. https://doi.org/10.1074/mcp.M500044-MCP200

    Article  CAS  Google Scholar 

  • Droux M, Ravanel S, Douce R (1995) Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine beta-lyase from spinach chloroplasts. Arch Biochem Biophys 316:585–595. https://doi.org/10.1006/abbi.1995.1078

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Hallak M, Vazana L, Shpilberg O, Levy I, Mazar J, Nathan I (2008) A molecular mechanism for mimosine-induced apoptosis involving oxidative stress and mitochondrial activation. Apoptosis 13:147–155. https://doi.org/10.1007/s10495-007-0156-7

    Article  CAS  PubMed  Google Scholar 

  • Hamilton R, Donaldson L, Lambourne L (1968) Enlarged thyroid glands in calves born to heifers fed a sole diet of Levcaena leucocephala. Aust Vet J 44:484

    Article  Google Scholar 

  • Hashiguchi H, Takahashi H (1977) Inhibition of two copper-containing enzymes, tyrosinase and dopamine β-hydroxylase, by l-mimosine. Mol Pharmacol 13:362–367

    CAS  PubMed  Google Scholar 

  • Hylin JW (1969) Toxic peptides and amino acids in foods and feeds. J Agric Food Chem 17:492–496. https://doi.org/10.1021/jf60163a003

    Article  CAS  Google Scholar 

  • Ishikawa T, Kuwata K (2009) Fragment molecular orbital calculation using the RI-MP2 method. Chem Phys Lett 474:195–198

    Article  CAS  Google Scholar 

  • Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601

    Article  CAS  PubMed  Google Scholar 

  • Jones RJ, Megarrity RG (1986) Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust Vet J 63:259–262

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Blunt C, Holmes J (1976) Enlarged thyroid glands in cattle grazing leucaena pastures. Trop Grassl 10:113–116

    CAS  Google Scholar 

  • Joshi H (1968) The effect of feeding on Leucaena leucocephala (Lam) de Wit. on reproduction in rats. Aust J Agric Res 19:341–352

    Article  Google Scholar 

  • Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999a) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  • Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999b) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalande M (1990) A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp Cell Res 186:332–339

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Hu CP, Li YJ, Gao YX, Wang XM, Yang JR (2015) Inhibitory effect of l-mimosine on bleomycin-induced pulmonary fibrosis in rats: role of eIF3a and p27. Int Immunopharmacol 27:53–64. https://doi.org/10.1016/j.intimp.2015.04.048

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Shih Y, Ling K (1962) Studies on the mechanism of toxicity of mimosine (β-(N-[3-hydroxypyridone])-α-aminopropionic acid). 1. Studies of the reactions of mimosine and pyridoxal 5-phosphate using the spectrophotometric method. J Formos Med Assoc 61:997–1003

    Google Scholar 

  • Lin J, Kuang T, Ling K (1963) Studies on the mechanism of toxicity of mimosine III. The effect of mimosine on the activity of l-dopa decarboxylase, in vitro. J Formos Med Assoc 62:587–592

    Google Scholar 

  • McGilvray D, Umbarger HE (1974) Regulation of transaminase C synthesis in Escherichia coli: conditional leucine auxotrophy. J Bacteriol 120:715–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi VS, Bingham JP, Li QX, Borthakur D (2013) midD-encoded ‘rhizomimosinase’ from Rhizobium sp. strain TAL1145 is a C–N lyase that catabolizes l-mimosine into 3-hydroxy-4-pyridone, pyruvate and ammonia. Amino Acids 44:1537–1547. https://doi.org/10.1007/s00726-013-1479-z

    Article  CAS  PubMed  Google Scholar 

  • Negi VS, Bingham JP, Li QX, Borthakur D (2014) A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation. Plant Physiol 164:922–934. https://doi.org/10.1104/pp.113.230870

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340. https://doi.org/10.1038/ncomms5340

    Article  CAS  PubMed  Google Scholar 

  • Qiao S, Murakami K, Zhao Q, Wang B, Seo H, Yamashita H, Li X, Iwamoto T, Ichihara M, Yoshino M (2012) Mimosine-induced apoptosis in C6 glioma cells requires the release of mitochondria-derived reactive oxygen species and p38, JNK activation. Neurochem Res 37:417–427. https://doi.org/10.1007/s11064-011-0628-6

    Article  CAS  PubMed  Google Scholar 

  • Rashid MH, Iwasaki H, Parveen S, Oogai S, Fukuta M, Hossain MA, Anai T, Oku H (2018) Cytosolic cysteine synthase switch cysteine and mimosine production in Leucaena leucocephala. Appl Biochem Biotechnol 186:613–632. https://doi.org/10.1007/s12010-018-2745-z

    Article  CAS  Google Scholar 

  • Ravanel S, Ruffet ML, Douce R (1995) Cloning of an Arabidopsis thaliana cDNA encoding cystathionine beta-lyase by functional complementation in Escherichia coli. Plant Mol Biol 29:875–882

    Article  CAS  PubMed  Google Scholar 

  • Reis P, Tunks D, Hegarty M (1975) Fate of mimosine administered orally to sheep and its effectiveness as a defleecing agent. Aust J Biol Sci 28:495–502

    Article  CAS  PubMed  Google Scholar 

  • Smith I, Fowden L (1966) A study of mimosine toxicity in plants. J Exp Bot 17:750–761

    Article  CAS  Google Scholar 

  • Soedarjo M, Hemscheidt TK, Borthakur D (1994) Mimosine, a toxin present in leguminous trees (Leucaena spp.), induces a mimosine-degrading enzyme activity in some rhizobium strains. Appl Environ Microbiol 60:4268–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suda S (1960) On the physiological properties of mimosine. Bot Mag Tokyo 73:142–147

    Article  Google Scholar 

  • Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci USA 109:19333–19338. https://doi.org/10.1073/pnas.1213199109

    Article  PubMed  PubMed Central  Google Scholar 

  • Tangendjaja B, Lowry J, Wills R (1986) Isolation of a mimosine degrading enzyme from leucaena leaf. J Sci Food Agric 37:523–526

    Article  CAS  Google Scholar 

  • Vimolmangkang S, Deng X, Owiti A, Meelaph T, Ogutu C, Han Y (2016) Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants. Sci Rep 6:26323. https://doi.org/10.1038/srep26323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YH, Li XW, Li WQ, Li XH, Li YJ, Hu GY, Liu ZQ, Li D (2016) Fluorofenidone attenuates bleomycin-induced pulmonary fibrosis by inhibiting eukaryotic translation initiation factor 3a (eIF3a) in rats. Eur J Pharmacol 773:42–50. https://doi.org/10.1016/j.ejphar.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  • Xuan T, Elzaawely A, Deba F, Fukuta M, Tawata S (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron Sustain Dev 26:89–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Madhugiri Nageswara-Rao and Professor Donovan Baily of the New Mexico State University for providing transcriptomic analysis data for Leucaena leucocephala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirosuke Oku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oogai, S., Fukuta, M., Watanabe, K. et al. Molecular characterization of mimosinase and cystathionine β-lyase in the Mimosoideae subfamily member Mimosa pudica. J Plant Res 132, 667–680 (2019). https://doi.org/10.1007/s10265-019-01128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-019-01128-4

Keywords

Navigation