Journal of Plant Research

, Volume 132, Issue 5, pp 581–588 | Cite as

Fern gametophytes of Angiopteris lygodiifolia and Osmunda japonica harbor diverse Mucoromycotina fungi

  • Yuki Ogura-TsujitaEmail author
  • Kohei Yamamoto
  • Yumiko Hirayama
  • Atsushi Ebihara
  • Nana Morita
  • Ryoko Imaichi
Regular Paper


Mycorrhizal symbiosis between plants and fungi is ubiquitous, and has been played key roles in plant terrestrialization and diversification. Although arbuscular mycorrhizal (AM) symbioses with Glomeromycotina fungi have long been recognized as both ancient and widespread symbionts, recent studies showed that Mucoromycotina fungi were also ancestral symbionts and would thus be expected to co-exist with many land plants. To explore whether Mucoromycotina colonize fern gametophytes, we subjected fungal associations with gametophytes of two distantly related ferns, Angiopteris lygodiifolia (Marattiales) and Osmunda japonica (Osmundales), to molecular analysis. Direct PCR amplification from intracellular hyphal coils was also performed. We detected Mucoromycotina sequences in the gametophytes of A. lygodiifolia and O. japonica at rates of 41% (7/17) and 50% (49/98) of gametophytes, respectively, and assigned them to 10 operational taxonomic units of Endogonales lineages. In addition, we used AM fungal-specific primers and detected Glomeromycotina sequences in all individuals examined. The results suggest that Glomeromycotina and Mucoromycotina colonized fern gametophytes simultaneously. We found that Mucoromycotina were present in fern gametophytes of Marratiales and Osmundales, which implies that a variety of fern taxa have Mucoromycotina associations.


Arbuscular mycorrhiza Fine root endophyte Gametophyte Mucoromycotina Mycorrhizal association Pteridophyte 



The authors thank K. Hashimoto, A. Sakoda, and A. Suzuki for collecting samples and for their technical assistance. We are grateful to two anonymous reviewers for their comments on the manuscript. This study was supported by JSPS KAKENHI Grants 17K07536 and 18K06391.

Supplementary material

10265_2019_1121_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (PDF 2739 kb)


  1. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boullard B (1957) La mycotrophie chez les pteridophytes. Sa frequence, ses caracteres, sa signification. Botaniste 41:5–185Google Scholar
  3. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115CrossRefGoogle Scholar
  4. Cooper KM (1976) A field survey of mycorrhizas in New Zealand ferns. N Z J Bot 14:169–181CrossRefGoogle Scholar
  5. Desirò A, Duckett JG, Pressel S, Villarreal JC, Bidartondo MI (2013) Fungal symbioses in hornworts: a chequered history. Proc R Soc B 280:20130207CrossRefPubMedGoogle Scholar
  6. Desirò A, Rimington WR, Jacob A, Pol NV, Smith ME, Trappe JM, Bidartondo MI, Bonito G (2017) Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus 8:245–257CrossRefPubMedPubMedCentralGoogle Scholar
  7. Duckett JG, Ligrone R (1992) A light and electron microscope study of the fungal endophytes in the sporophyte and gametophyte of Lycopodium cernuum with observations on the gametophyte–sporophyte junction. Can J Bot 70:58–72CrossRefGoogle Scholar
  8. Duckett JG, Carafa A, Ligrone R (2006) A highly differentiated glomeromycotean association with the mucilage-secreting, primitive antipodean liverwort Treubia (Treubiaceae): clues to the origins of mycorrhizas. Am J Bot 93:797–813CrossRefPubMedGoogle Scholar
  9. Ebihara A, Iwatsuki K, Kurita S, Ito M (2002) Systematic position of Hymenophyllum rolandi-principis Rosenst. or a monotypic genus Rosenstockia Copel. (Hymenophyllaceae) endemic to New Caledonia. Acta Phytotax Geobot 53:35–49Google Scholar
  10. Ebihara A, Farrar DR, Ito M (2008) The sporophyte-less filmy fern of eastern North America Trichomanes intricatum (Hymenophyllaceae) has the chloroplast genome of an Asian species. Am J Bot 95:1645–1651CrossRefPubMedGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  12. Field KJ, Pressel S (2018) Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytol 220:996–1011CrossRefPubMedGoogle Scholar
  13. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015) First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–756CrossRefPubMedGoogle Scholar
  14. Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2016) Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J 10:1514–1526CrossRefPubMedGoogle Scholar
  15. Gemma JN, Koske RE, Flynn T (1992) Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. Am J Bot 79:843–852CrossRefGoogle Scholar
  16. Hall IR (1977) Species and mycorrhizal infections of New Zealand Endogonaceae. Trans Br Mycol Soc 68:341–356CrossRefGoogle Scholar
  17. Hasebe M, Wolf PG, Pryer KM, Ueda K, Ito M, Sano R, Gastony GJ, Yokoyama J, Manhart JR, Murakami N, Crane EH, Haufler CH, Hauk WD (1995) Fern phylogeny based on rbcL nucleotide sequences. Am Fern J 85:134–181CrossRefGoogle Scholar
  18. Hodson E, Shahid F, Basinger J, Kaminskyj S (2009) Fungal endorhizal associates of Equisetum species from Western and Arctic Canada. Mycol Progr 8:19–27CrossRefGoogle Scholar
  19. Hoysted GA, Kowal J, Jacob A, Rimington WR, Duckett JG, Pressel S, Orchard S, Ryan MH, Field KJ, Bidartondo MI (2018) A mycorrhizal revolution. Curr Opin Plant Biol 44:1–6CrossRefPubMedGoogle Scholar
  20. Kessler M, Jonas R, Cicuzza D, Kluge J, Piątek K, Naks P, Lehnert M (2010) A survey of the mycorrhization of Southeast Asian ferns and lycophytes. Plant Biol 12:788–793CrossRefPubMedGoogle Scholar
  21. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349CrossRefPubMedGoogle Scholar
  22. Ogura-Tsujita Y, Sakoda A, Ebihara A, Yukawa T, Imaichi R (2013) Arbuscular mycorrhiza formation in cordate gametophytes of two ferns, Angiopteris lygodiifolia and Osmunda japonica. J Plant Res 126:41–50CrossRefPubMedGoogle Scholar
  23. Ogura-Tsujita Y, Hirayama Y, Sakoda A, Suzuki A, Ebihara A, Morita N, Imaichi R (2016) Arbuscular mycorrhizal colonization in field-collected terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns (Osmundaceae, Gleicheniaceae, Plagiogyriaceae, Cyatheaceae). Mycorrhiza 26:87–97CrossRefPubMedGoogle Scholar
  24. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241CrossRefGoogle Scholar
  25. Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D, Monk J, Simonin A, Ryan MH (2017a) Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol 213:481–486CrossRefPubMedGoogle Scholar
  26. Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D, Ryan MH (2017b) Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27:619–638CrossRefPubMedGoogle Scholar
  27. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164CrossRefPubMedGoogle Scholar
  28. Pressel S, Bidartondo MI, Field KJ, Rimington WR, Duckett JG (2016) Pteridophyte fungal associations: current knowledge and future perspectives. J Syst Evol 54:666–678CrossRefGoogle Scholar
  29. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843CrossRefPubMedGoogle Scholar
  30. Rimington WR, Pressel S, Duckett JG, Bidartondo MI (2015) Fungal associations of basal vascular plants: reopening a closed book? New Phytol 205:1394–1398CrossRefPubMedGoogle Scholar
  31. Schmid E, Oberwinkler F (1993) Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron microscopy. New Phytol 124:69–81CrossRefGoogle Scholar
  32. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  33. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular–arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295PubMedPubMedCentralGoogle Scholar
  34. Spatafora JW, Chang Y, Benny GL et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046CrossRefPubMedPubMedCentralGoogle Scholar
  35. Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult JP, Strullu DG (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses. New Phytol 203:964–979CrossRefPubMedGoogle Scholar
  36. Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM (2018) The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol 220:1012–1030CrossRefPubMedGoogle Scholar
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  38. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  39. Turnau K, Ronikier M, Unrug J (1999) Role of mycorrhizal links between plants in establishment of liverworts thalli in natural habitats. Acta Soc Bot Pol 68:63–68CrossRefGoogle Scholar
  40. Turnau K, Anielska T, Jurkiewicz A (2005) Mycothallic/mycorrhizal symbiosis of chlorophyllous gametophytes and sporophytes of a fern, Pellaea viridis (Forsk.) Prantl (Pellaeaceae, Pteridales). Mycorrhiza 15:121–128CrossRefPubMedGoogle Scholar
  41. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefGoogle Scholar
  42. Walker C, Gollotte A, Redecker D (2018) A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213–219CrossRefPubMedGoogle Scholar
  43. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of AgricultureSaga UniversitySagaJapan
  2. 2.United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  3. 3.Tochigi Prefectural MuseumUtsunomiyaJapan
  4. 4.National Museum of Nature and ScienceTsukubaJapan
  5. 5.Mie Prefectural MuseumMieJapan
  6. 6.Department of Chemical and Biological SciencesJapan Women’s UniversityTokyoJapan

Personalised recommendations