Journal of Plant Research

, Volume 132, Issue 4, pp 509–520 | Cite as

Spatiotemporal variation in phenolic levels in galls of calophyids on Schinus polygama (Anacardiaceae)

  • Lubia M. Guedes
  • Narciso Aguilera
  • Bruno G. Ferreira
  • Sebastián Riquelme
  • Katia Sáez-Carrillo
  • José Becerra
  • Claudia Pérez
  • Evelyn Bustos
  • Rosy M. S. IsaiasEmail author
Regular Paper


The expression of plant secondary metabolism is strongly controlled by plant both in time and space. Although the variation of secondary metabolites, such as soluble and structural phenolics (e.g., lignins), has been largely observed in gall-inducing insects, and compared to their non-galled host organs, only a few datasets recording such variation are available. Accordingly, the relative importance of spatiotemporal variability in phenolic contents, and the influence of gall developmental stages on the original composition of host organs are poorly discussed. To address this knowledge gap, we histochemically determined the sites of polyphenol and lignin accumulation, and the polyphenol contents in three developmental stages of two calophyid galls and their correspondent host organs. Current results indicate that the compartmentalization of phenolics and lignins on Schinus polygama (Cav.) Cabrera follows a similar pattern in the two-calophyid galls, accumulating in the outer (the external tissue layers) and in the inner tissue compartments (the cell layers in contact with the gall chamber). The non-accumulation in the median compartment (median parenchyma layers of gall wall with vascular bundles, where gall inducer feeds) is important for the inducer, because its mouth apparatus enter in contact with the cells of this compartment. Also, the concentration of phenolics has opposite dynamics, decreasing in leaf galls and increasing in stem galls, in temporal scale, i.e., from maturation toward senescence. The concentration of phenolics in non-galled host organs, and in both galls indicated the extended phenotype of Calophya rubra (Blanchard) and C. mammifex Burckhardt & Basset (Hemiptera: Sternorrhyncha: Psylloidea: Calophyidae) over the same host plant metabolic potentiality.


Calophyidae Compartmentalization Gall Lignins Polyphenols Schinus polygama 



This work was supported by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) under Grant 63140050 (National PhD/2014-fellowship) awarded to LMG, Projects REDI170025 and MEC80170028 funded by CONICYT, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors are grateful to PD Dr. Daniel Burckhardt (Naturhistorisches Museum Switzerland) for his contribution on insect identification.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10265_2019_1118_MOESM1_ESM.pdf (112 kb)
Supplementary material 1 (PDF 111 kb)


  1. Abrahamson WG, McCrea KD, Whitwell AJ, Vernieri LA (1991) The role of phenolics in goldenrod ball gall resistance and formation. Biochem Syst Ecol 19:615–622CrossRefGoogle Scholar
  2. Agudelo I, Wagner ML, Gurni AA, Ricco RA (2013) Dinámica de polifenoles y estudio anatomo-histoquímico en Schinus longifolius (Lindl.) Speg. (Anacardiaceae) en respuesta a la infección por Calophya mammifex (Hemiptera–Calophyidae). BLACPMA 12:162–175Google Scholar
  3. Attard E (2013) A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Cent Eur J Biol 8:48–53Google Scholar
  4. Bedetti CS, Bragança GP, Isaias RMS (2014a) Influence of auxin and phenolic accumulation on the patterns of cell differentiation in distinct gall morphotypes on Piptadenia gonoacantha (Fabaceae). Aust J Bot 65:411–420CrossRefGoogle Scholar
  5. Bedetti CS, Modolo LV, Isaias RMS (2014b) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart) MacBr (Fabaceae: Mimosoideae). Biochem Syst Ecol 55:53–59CrossRefGoogle Scholar
  6. Berenbaum M, Zangerl A (1999) Genetic variation in cytochrome P450-based resistance to plant allelochemicals and insecticides. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Cambridge, pp 55–84Google Scholar
  7. Bishop DL (2002) Gene expression of a vacuolar peroxidase with stress-induced pathogenesis in wheat sheaths. Physiol Mol Plant Pathol 61:65–71CrossRefGoogle Scholar
  8. Borg-Olivier O, Monties B (1993) Lignin, suberin, phenolic acids and tyramine in the suberized, wound-induced potato periderm. Phytochemistry 32:601–606CrossRefGoogle Scholar
  9. Bragança GP, Oliveira DC, Isaias RMS (2017) Compartmentalization of metabolites and enzymatic mediation in nutritive cells of Cecidomyiidae galls on Piper arboreum Aubl. (Piperaceae). J Plant Stud 6:11–22CrossRefGoogle Scholar
  10. Burckhardt D, Basset Y (2000) The jumping plant-lice (Hemiptera, Psylloidea) associated with Schinus (Anacardiaceae): systematics, biogeography and host plant relationships. J Nat Hist 34:57–155CrossRefGoogle Scholar
  11. Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367CrossRefGoogle Scholar
  12. Cipollini DF, Redman AM (1999) Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J Chem Ecol 25:271–281CrossRefGoogle Scholar
  13. Close D, McArthur C (2002) Rethinking the role of many plant phenolics–protection from photodamage not herbivores? Oikos 99:166CrossRefGoogle Scholar
  14. Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midl Nat 110:225–234CrossRefGoogle Scholar
  15. Dawra RK, Makkar HPS, Singh B (1988) Total phenolics, condensed tannins, and protein-precipitable phenolics in young and mature leaves of oak species. J Agric Food Chem 36:951–953CrossRefGoogle Scholar
  16. Detoni ML, Vasconcelos EG, Rust NM, Isaias RMS, Soares GLG (2011) Seasonal variation of phenolic content in galled and non-galled tissues of Calliandra brevipes Benth (Fabaceae: Mimosoidae). Acta Bot Bras 25:601–604CrossRefGoogle Scholar
  17. Dias GD, Ferreira BG, Moreira GRP, Isaias RMS (2013a) Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). An Acad Bras Cienc 85:187–200CrossRefGoogle Scholar
  18. Dias GG, Moreira GRP, Ferreira BG, Isaias RMS (2013b) Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change color? Biochem Syst Ecol 48:111–122CrossRefGoogle Scholar
  19. Donaldson JR, Stevens MT, Barnhill HR, Lindroth RL (2006) Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J Chem Ecol 32:1415–1429CrossRefGoogle Scholar
  20. Ferreira BG, Álvarez R, Avritzer SC, Isaias RM (2016) Revisiting the histological patterns of storage tissues: beyond the limits of gall-inducing taxa. Botany 95:173–184CrossRefGoogle Scholar
  21. Ferreira BG, Falcioni R, Guedes LM, Avritzer SC, Antunes WC, Souza LA, Isaias RMS (2017) Preventing false negatives for histochemical detection of phenolics and lignins in PEG-embedded plant tissues. J Histochem Cytochem 65:1–12CrossRefGoogle Scholar
  22. Ferreira BG, Oliveira DC, Moreira ASFP, Faria AP, Guedes LM, França MGC, Álvarez R, Isaias RMS (2018) Antioxidant metabolism in galls due to the extended phenotypes of the associated organisms. PLoS One 13:e0205364CrossRefGoogle Scholar
  23. Formiga AT, Gonçalves SJMR, Soares GLG, Isaias RMS (2009) Relações entre o teor de fenóis totais e o ciclo das galhas de Cecidomyiidae em Aspidosperma spruceanum Müll. Arg. (Apocynaceae). Acta Bot Bras 23:93–99CrossRefGoogle Scholar
  24. Guedes LM, Aguilera N, Becerra J, Hernández V, Isaias RSM (2016) Leaf and stem galls of Schinus polygamus (Cav.) Cabr (Anacardiaceae): anatomical and chemical implications. Biochem Syst Ecol 69:266–273CrossRefGoogle Scholar
  25. Guedes LM, Aguilera N, Ferreira BG, Becerra J, Hernández V, Isaias RSM (2018a) Anatomical and phenological implications between Schinus polygama (Cav.) (Cabrera) (Anacardiaceae) and the galling insect Calophya rubra (Blanchard) (Hemiptera: Psylloidea). Plant Biol. 20:507–515CrossRefGoogle Scholar
  26. Guedes LM, Aguilera N, Ferreira BG, Becerra J, Sáez K, Pérez C, Isaias RMS (2018b) Factors influencing the morphogenesis of galls induced by Calophya mammifex (Calophyidae) on Schinus polygama (Anacardiaceae) leaves. Botany 96:589–599CrossRefGoogle Scholar
  27. Gulmon SL, Mooney HA (1986) Costs of defense and their effects on plant productivity. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 681–698Google Scholar
  28. Harborne JB, Grayer RJ (2013) The anthocyanins. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman and Hall, London, pp 1–18Google Scholar
  29. Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501CrossRefGoogle Scholar
  30. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 3:283–335CrossRefGoogle Scholar
  31. Higuchi T (1985) Biosynthesis and biodegradation of wood components. Academic Press, New YorkGoogle Scholar
  32. Hori K (1992) Insect secretion and their effect on plant growth, with special reference to hemipterans. In: Shorthouse JD, Rohfristsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 157–170Google Scholar
  33. Isaias RSM, Oliveira DC (2014) Gall phenotypes-product of plant cells defensive responses to the inducers attack. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 273–290Google Scholar
  34. Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS (2015) The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation. Biochim Biophys Acta 1850:1509–1517CrossRefGoogle Scholar
  35. Isaias RSM, Ferreira BG, Alvarenga DR, Barbosa LR, Salminen JP, Steinbauer MJ (2018) Functional compartmentalisation of nutrients and phenolics in the tissues of galls induced by Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) on Eucalyptus camaldulensis (Myrtaceae). Aust Entomol 57:238–246CrossRefGoogle Scholar
  36. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New YorkGoogle Scholar
  37. Kause A, Ossipov V, Haukioja E, Lempa K, Hanhimäki S, Ossipova S (1999) Multiplicity of biochemical factors determining quality of growing birch leaves. Oecologia 120:102–112CrossRefGoogle Scholar
  38. Kolattukudy PE (2011) Polyesters in higher plants. In: Babel W, Steinbuchel A (eds) Advances in biochemical engineering/biotechnology, vol 71. Biopolyesters 1. Springer, Berlin, pp 1–49Google Scholar
  39. Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Filippo I (ed) Phytochemistry: advances in research. Research Signpost, Thiruvananthapuram, pp 23–67Google Scholar
  40. Lu F, Marita JM, Lapierre C, Jouanin L, Morreel K, Boerjan W, Ralph J (2010) Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins. Plant Physiol 153:569–579CrossRefGoogle Scholar
  41. Mani MS (1964) Ecology of plant galls. Dr. W. Junk Publishers, The HagueCrossRefGoogle Scholar
  42. Meyer J, Maresquelle HJ (1983) Anatomie des galles. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  43. Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750CrossRefGoogle Scholar
  44. Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981CrossRefGoogle Scholar
  45. Moura JC, Bonine CA, Viana OFJ, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376CrossRefGoogle Scholar
  46. Neilson EH, Goodger JQ, Woodrow IE, Møller BL (2013) Plant chemical defense: at what cost? Trends Plant Sci 18:250–258CrossRefGoogle Scholar
  47. Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181:379–386CrossRefGoogle Scholar
  48. Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willow by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187CrossRefGoogle Scholar
  49. O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty, MelbourneGoogle Scholar
  50. Oliveira DC, Moreira ASFP, Isaias RMS, Martini V, Rezende UC (2017) Sink status and photosynthetic rate of the leaflet galls induced by Bystracoccus mataybae (Eriococcidae) on Matayba guianensis (Sapindaceae). Front Plant Sci 8:1249CrossRefGoogle Scholar
  51. Patrick JW (1988) Assimilate partitioning in relation to crop productivity. HortScience 23:33–40Google Scholar
  52. Patten AM, Cardenas CL, Cochrane FC, Laskar DD, Bedgar DL, Davin LB, Lewis NG (2005) Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66:2092–2107CrossRefGoogle Scholar
  53. Patten AM, Jourdes M, Brown EE, Laborie MP, Davin LB, Lewis NG (2007) Reaction tissue formation and stem tensile modulus properties in wild-type and p-coumarate3-hydroxylase downregulated lines of alfalfa, Medicago sativa (Fabaceae). Am J Bot 94:912–925CrossRefGoogle Scholar
  54. Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24CrossRefGoogle Scholar
  55. Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, CórdobaGoogle Scholar
  56. Rodríguez R (2011) Anacardiaceae. In: Rodríguez R, Marticorena C (eds) Flora de Chile. Ediciones Universidad de Concepción, Concepción, pp 88–103Google Scholar
  57. Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 60–86Google Scholar
  58. Stone GN, Schonrögge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522CrossRefGoogle Scholar
  59. Teixeira CT, Oliveira DCD, Kuster VC, Isaias RMS (2017) Immunocytochemical demonstration of cell wall components related to tissue compartments in the globoid galls induced by Clinodiplosis sp. (Cecidomyiidae) on Croton floribundus Spreng. (Euphorbiaceae). Botany 96:9–18CrossRefGoogle Scholar
  60. Tooker JF, Helms AM (2014) Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J Chem Ecol 40:742–753CrossRefGoogle Scholar
  61. Van Cutsem E, Simonart G, Degand H, Faber AM, Morsomme P, Boutry M (2011) Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response. Proteomics 11:440–454CrossRefGoogle Scholar
  62. Van Dam NM, Horn M, Mares M, Baldwin IT (2001) Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. J Chem Ecol 27:547–568CrossRefGoogle Scholar
  63. Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:220Google Scholar
  64. Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv Bot Res 25:141–169CrossRefGoogle Scholar
  65. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19CrossRefGoogle Scholar
  66. Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175CrossRefGoogle Scholar
  67. Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat 147:599–608CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Lubia M. Guedes
    • 1
  • Narciso Aguilera
    • 1
  • Bruno G. Ferreira
    • 2
  • Sebastián Riquelme
    • 3
  • Katia Sáez-Carrillo
    • 4
  • José Becerra
    • 5
  • Claudia Pérez
    • 5
  • Evelyn Bustos
    • 5
  • Rosy M. S. Isaias
    • 6
    Email author
  1. 1.Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de Botânica, Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Unidad de Desarrollo Tecnológico (UDT)Universidad de ConcepciónCoronelChile
  4. 4.Departamento de Estadística, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile
  5. 5.Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  6. 6.Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations