Advertisement

Journal of Plant Research

, Volume 132, Issue 4, pp 521–529 | Cite as

Expression pattern of CUC3 ortholog in Zeylanidium tailichenoides (Podostemaceae) infers organization of a unique distichous shoot in Podostemoideae

  • Natsu KatayamaEmail author
  • Rie Tanaka
  • Rieko Fujinami
  • Ryoko Imaichi
Regular Paper

Abstract

Shoots of the aquatic eudicot family, Podostemaceae, exhibit unusual organogenesis with mixed leaf and stem identities. New shoots arise at the base of the older shoot with shoot apical meristem (SAM) identity but the entire SAM differentiates into a “leaf” as it develops in the Podostemoideae subfamily. The “leaves” are tightly arranged in a zigzag manner to form an apparent distichous shoot as a whole. Although previous studies have suggested that Podostemoideae shoots have evolved by modifying the ancestral sympodial branching system in the basal Tristichoideae subfamily, this evolutionary scenario requires elucidation at the molecular level. To confirm that the shoots arise as axillary shoots, in the present study, we examined gene expression patterns in plumular shoots of Zeylanidium tailichenoides using CUP-SHAPED COTYLEDON 3 (CUC3) and SHOOT MERISTEMLESS (STM) orthologs, which are involved in the determination of axils and meristem formation in model plants. Expression of the CUC3 ortholog was detected at the adaxial base of cotyledons and parental shoots where the new shoots are initiated, while STM ortholog was expressed at the initiation site and in the young shoot primordia throughout early shoot development. The results demonstrate that each Z. tailichenoides shoot arises as an axillary bud in a manner similar to axillary meristem formation in model plants involving CUC3 and STM genes. Considering that each of the two cotyledons produces an axillary bud that in turn continues to form its own axillary bud independently, the apparent distichous shoot in Z.tailichenoides is not a single shoot, but a composite of two sympodially branched shoots.

Keywords

Axillary buds CUC3 Podostemaceae Shoot apical meristem STM Sympodial branching 

Notes

Acknowledgements

The authors would like to thank T. Wongprasert, M. Kato and S. Koi for their help during the collection trips in Thailand. We thank Y. Hirayama for providing a part of anatomical data. This study was supported by a Research Fellowship to N.K. and a Grant-in-Aid for Scientific Research to M.K. from the Japan Society for the Promotion of Science.

Supplementary material

10265_2019_1113_MOESM1_ESM.pdf (3.5 mb)
Supplementary file1 (PDF 3584 kb)

References

  1. Aida M, Ishida T, Fukaki H et al (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857CrossRefGoogle Scholar
  2. Bell AD (2008) Plant form: an illustrated guide to flowering plant morphology. Timber Press, PortlandGoogle Scholar
  3. Cook CDK, Rutishauser R (2007) Podostemaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, Berlin, pp 304–344Google Scholar
  4. Fujinami R, Imaichi R (2009) Developmental anatomy of Terniopsis malayana (Podostemaceae, subfamily Tristichoideae), with implications for body plan evolution. J Plant Res 122:551–558CrossRefGoogle Scholar
  5. Fujinami R, Imaichi R (2015) Developmental morphology of flattened shoots in Dalzellia ubonensis and Indodalzellia gracilis with implications for the evolution of diversified shoot morphologies in the subfamily Tristichoideae (Podostemaceae). Am J Bot 102:848–859CrossRefGoogle Scholar
  6. Fujinami R, Ghogue JP, Imaichi R (2013) Developmental morphology of the controversial ramulus organ of Tristicha trifaria (subfamily Tristichoideae, Podostemaceae): implications for evolution of a unique body plan in Podostemaceae. Int J Plant Sci 174:609–618CrossRefGoogle Scholar
  7. Hammond BL (1936) Regeneration of Podostemon ceratophyllum. Bot Gaz 97:834–845CrossRefGoogle Scholar
  8. Hibara KI, Karim MR, Takada S et al (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957CrossRefGoogle Scholar
  9. Imaichi R, Hiyama Y, Kato M (2005) Leaf development in the absence of a shoot apical meristem in Zeylanidium subulatum (Podostemaceae). Ann Bot 96:51–58CrossRefGoogle Scholar
  10. Jäger-Zürn I (1997) Comparative morphology of the vegetative structures of Tristicha trifaria, Indotristicha ramosissima and Dalzellia ceylanica (Podostemaceae, Tristichoideae): a review. Aquat Bot 57:71–96CrossRefGoogle Scholar
  11. Katayama N, Koi S, Kato M (2010) Expression of shoot meristemless, wuschel, and a symmetric leaves1 homologs in the shoots of Podostemaceae: implications for the evolution of novel shoot organogenesis. Plant Cell 22:2131–2140CrossRefGoogle Scholar
  12. Katayama N, Kato M, Yamada T (2013) Origin and development of the cryptic shoot meristem in Zeylanidium lichenoides (Podostemaceae). Am J Bot 100:635–646CrossRefGoogle Scholar
  13. Kato M, Koi S (2018) Molecular phylogeny of Zeylanidium (Podostemaceae) showing a new cryptic species from Thailand. Acta Phytotax Geobot 69:1–9Google Scholar
  14. Katoh K (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl Acids Res 33:511–518CrossRefGoogle Scholar
  15. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298CrossRefGoogle Scholar
  16. Kita Y, Kato M (2001) Infrafamilial phylogeny of the aquatic angiosperm Podostemaceae inferred from the nucleotide sequences of the matK gene. Plant Biol (Stuttg) 3:156–163CrossRefGoogle Scholar
  17. Kita Y, Kato M (2005) Seedling developmental anatomy of an undescribed Malaccotristicha species (Podostemaceae, subfamily Tristichoideae) with implications for body plan evolution. Plant Syst Evol 254:221–232CrossRefGoogle Scholar
  18. Koi S, Katayama N (2013) Gene expression analysis of aquatic angiosperms podostemaceae to gain insight into the evolution of their enigmatic morphology. Methods Mol Biol 959:83–95CrossRefGoogle Scholar
  19. Koi S, Kato M (2007) Developmental Morphology of the Shoot in Weddellina squamulosa and implications for shoot evolution in the Podostemaceae. Ann Bot 99:1121–1130CrossRefGoogle Scholar
  20. Koi S, Imaichi R, Kato M (2005) Endogenous leaf initiation in the apical-meristemless shoot of Cladopus queenslandicus (Podostemaceae) and implications for evolution of shoot morphology. Int J Plant Sci 166:199–206CrossRefGoogle Scholar
  21. Koi S, Kita Y, Hirayama Y et al (2012) Molecular phylogenetic analysis of Podostemaceae: implications for taxonomy of major groups. Bot J Linn Soc 169:461–492CrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  23. Mohan Ram H, Sehgal A (1997) In vitro studies on developmental morphology of Indian Podostemaceae. Aquat Bot 57:97–132CrossRefGoogle Scholar
  24. Moline P, Thiv M, Ameka G et al (2007) Comparative morphology and molecular systematics of African Podostemaceae-Podostemoideae, with emphasis on Dicraeanthus and Ledermanniella from Cameroon. Int J Plant Sci 168:159–180CrossRefGoogle Scholar
  25. Raman S, Greb T, Peaucelle A et al (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76CrossRefGoogle Scholar
  26. Rutishauser R (1995) Developmental patterns of leaves in podostemaceae compared with more typical flowering plants—saltational evolution and fuzzy morphology. Can J Bot 73:1305–1317CrossRefGoogle Scholar
  27. Rutishauser R, Grubert M (1999) The architecture of Mourera fluviatilis (Podostemaceae): developmental morphology of inflorescences, flowers, and seedlings. Am J Bot 86:907–922CrossRefGoogle Scholar
  28. Rutishauser R, Grubert M (2000) Developmental morphology of Apinagia multibranchiata (Podostemaceae) from the Venezuelan Guyanas. Bot J Linn Soc 132:299–323CrossRefGoogle Scholar
  29. Sehgal A, Khurana JP, Sethi M et al (2007) Organ identity of the thalloid plant body of Griffithella hookeriana and Polypleurum stylosum—Podostemoideae (Podostemaceae). Plant Syst Evol 267:93–104CrossRefGoogle Scholar
  30. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, New YorkCrossRefGoogle Scholar
  31. Suzuki K, Kita Y, Kato M (2002) Comparative developmental anatomy of seedlings in nine species of podostemaceae (subfamily Podostemoideae). Ann Bot 89:755–765CrossRefGoogle Scholar
  32. Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ. de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577CrossRefGoogle Scholar
  33. Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Natsu Katayama
    • 1
    Email author
  • Rie Tanaka
    • 2
  • Rieko Fujinami
    • 3
  • Ryoko Imaichi
    • 2
  1. 1.Department of Biology, Faculty of ScienceChiba UniversityChibaJapan
  2. 2.Department of Chemical and Biological Sciences, Faculty of ScienceJapan Women’s UniversityTokyoJapan
  3. 3.Department of SciencesKyoto University of EducationKyotoJapan

Personalised recommendations