Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Dendrobium officinale is a traditional medicinal herb with a variety of bioactive components. Alkaloid is one of the major active ingredients of Dendrobium plants, and its immune regulatory effects have been well-studied. Although a number of genes involved in the biosynthetic pathway of alkaloids have been elucidated, the regulation mechanism underlying the methyl-jasmonate (MeJA)-induced accumulation of alkaloids in D. officinale is largely unknown. In our study, a total of 4,857 DEGs, including 2,943 up- and 1,932 down-regulated genes, were identified between the control and MeJA-treated groups. Kyoto Encyclopedia of Genes and Genomes annotation showed that a number of DEGs were associated with the putative alkaloid biosynthetic pathway in D. officinale. The main group of Dendrobium alkaloids are sesquiterpene alkaloids, which are the downstream products of mevalonate (MVA) and methylerythritol 4-phosphate (MEP) pathway. Several MVA and MEP pathway genes were significantly up-regulated by the MeJA treatment, suggesting an active precursor supply for the alkaloid biosynthesis under MeJA treatment. A number of MeJA-induced P450 family genes, aminotransferase genes and methyltransferase genes were identified, providing several important candidates to further elucidate the sesquiterpene alkaloid biosynthetic pathway of D. officinale. Furthermore, a large number of MeJA-induced transcript factor encoding genes were identified, suggesting a complex genetic network affecting the sesquiterpene alkaloid metabolism in D. officinale. Our data aids to reveal the regulation mechanism underlying the MeJA-induced accumulation of sesquiterpene alkaloids in D. officinale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T (2015) CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. J Exp Bot 66:3879–3892

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo Y-S, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS (2014) A root-expressed l-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 26:3745–3762

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhattacharyya P, Kumaria S, Tandon P (2015) Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid. Phytochemistry 117:306–316

    CAS  PubMed  Google Scholar 

  4. Bruckhoff V, Haroth S, Feussner K, Konig S, Brodhun F, Feussner I (2016) Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PloS One 11:e0159875

    PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Shen Q, Lin R, Zhao Z, Shen C, Sun C (2017) De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering. Plant Physiol Biochem 119:319–327

    CAS  PubMed  Google Scholar 

  6. Chen G, Xu H, Zhang T, Bai C, Dong L (2018) Fenoxaprop-P-ethyl resistance conferred by cytochrome P450s and target site mutation in Alopecurus japonicus. Pest Manag Sci 74:1694–1703

    CAS  PubMed  Google Scholar 

  7. Cheng X, Chen W, Zhou Z, Liu J, Wang H (2013) Functional characterization of a novel tropinone reductase-like gene in Dendrobium nobile Lindl. J Plant Physiol 170:958–964

    CAS  PubMed  Google Scholar 

  8. Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M (2017) Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol 17:6–6

    PubMed  PubMed Central  Google Scholar 

  9. Ekevag U, Elander M, Gawell L, Leander K, Luning B (1973) Studies on orchidaceae alkaloids. 33. Two new alkaloids, N-cis- and N-trans-cinnamoyl-norcuskhygrine from Dendrobium chrysanthum Wall. Acta Chem Scandinav 27:1982–1986

    CAS  Google Scholar 

  10. Goklany S, Rizvi NF, Loring RH, Cram EJ, Lee-Parsons CW (2013) Jasmonate-dependent alkaloid biosynthesis in Catharanthus Roseus hairy root cultures is correlated with the relative expression of Orca and Zct transcription factors. Biotechnol Prog 29:1367–1376

    CAS  PubMed  Google Scholar 

  11. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol 29:644–652

    CAS  Google Scholar 

  12. Guo X, Li Y, Li C, Luo H, Wang L, Qian J, Luo X, Xiang L, Song J, Sun C, Xu H, Yao H, Chen S (2013) Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene 527:131–138

    CAS  PubMed  Google Scholar 

  13. He C, Zhang J, Liu X, Zeng S, Wu K, Yu Z, Wang X, Teixeira da Silva JA, Lin Z, Duan J (2015) Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol Biol 88:219–231

    CAS  PubMed  Google Scholar 

  14. Hu Y, Zhang C, Zhao X, Wang Y, Feng D, Zhang M, Xie H (2016) (+/−)-Homocrepidine A, a pair of anti-inflammatory enantiomeric octahydroindolizine alkaloid dimers from Dendrobium crepidatum. J Natural Prod 79:252–256

    CAS  Google Scholar 

  15. Jiao C, Song C, Zheng S, Zhu Y, Jin Q, Cai Y, Lin Y (2018) Metabolic profiling of Dendrobium officinale in response to precursors and methyl jasmonate. Int J Molec Sci 19:728

    Google Scholar 

  16. Kreis LM, Carreira EM (2012) Total synthesis of (–)-dendrobine. Angewandte Chem Int Ed 51:3436–3439

    CAS  Google Scholar 

  17. Kurotani K, Hayashi K, Hatanaka S, Toda Y, Ogawa D, Ichikawa H, Ishimaru Y, Tashita R, Suzuki T, Ueda M, Hattori T, Takeda S (2015) Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol 56:779–789

    CAS  PubMed  Google Scholar 

  18. Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF (2009) Genome size diversity in orchids: consequences and evolution. Annals Bot 104:469–481

    CAS  Google Scholar 

  19. Li Y, Li F, Gong Q, Wu Q, Shi J (2011) Inhibitory effects of Dendrobium alkaloids on memory impairment induced by lipopolysaccharide in rats. Planta Med 77:117–121

    CAS  PubMed  Google Scholar 

  20. Li Q, Ding G, Li B, Guo SX (2017) Transcriptome analysis of genes involved in dendrobine biosynthesis in Dendrobium nobile Lindl. infected with Mycorrhizal fungus MF23 (Mycena sp.). Sci Rep 7:316

    PubMed  PubMed Central  Google Scholar 

  21. Liu JP, Hu J, Liu YH, Yang CP, Zhuang YF, Guo XL, Li YJ, Zhang L (2018) Transcriptome analysis of Hevea brasiliensis in response to exogenous methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiol Molec Biol Plants 24:349–358

    CAS  Google Scholar 

  22. Lu JJ, Suo NN, Hu X, Wang S, Liu JJ, Wang HZ (2012) Development and characterization of 110 novel EST-SSR markers for Dendrobium officinale (Orchidaceae). Am J Bot 99:415–420

    Google Scholar 

  23. Lynch VM, Li W, Martin SF (1988) Structure of the ABC ring synthon of dendrobine. Acta Crystallograph Sect C 44:187–189

    Google Scholar 

  24. Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, Zhang KY (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93:1795–1803

    CAS  PubMed  Google Scholar 

  25. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Molec Plant 6:1531–1549

    CAS  Google Scholar 

  27. Schwab W, Wust M (2015) Understanding the constitutive and induced biosynthesis of mono- and sesquiterpenes in grapes (Vitis vinifera): a key to unlocking the biochemical secrets of unique grape aroma profiles. J Agric Food Chem 63:10591–10603

    CAS  PubMed  Google Scholar 

  28. Shen C, Guo H, Chen H, Shi Y, Meng Y, Lu J, Feng S, Wang H (2017) Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-SEq. Sci Rep 7:187

    PubMed  PubMed Central  Google Scholar 

  29. Shi J, Ma C, Qi D, Lv H, Yang T, Peng Q, Chen Z, Lin Z (2015) Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biol 15:233

    PubMed  PubMed Central  Google Scholar 

  30. Siberil Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Molec Biol 45:477–488

    CAS  Google Scholar 

  31. Vaccaro MC, Mariaevelina A, Malafronte N, De Tommasi N, Leone A (2017) Increasing the synthesis of bioactive abietane diterpenes in Salvia sclarea hairy roots by elicited transcriptional reprogramming. Plant Cell Rep 36:375–386

    CAS  PubMed  Google Scholar 

  32. Wang HQ, Jin MY, Paek KY, Piao XC, Lian ML (2016) An efficient strategy for enhancement of bioactive compounds by protocorm-like body culture of Dendrobium candidum. Indust Crops Prod 84:121–130

    CAS  Google Scholar 

  33. Wu JB, Zhang CL, Mao PP, Qian YS, Wang HZ (2014) First report of leaf spot caused by Nigrospora oryzae on Dendrobium candidum in China. Plant Dis 98:996–996

    CAS  PubMed  Google Scholar 

  34. Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX (2016) Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci 7:1653

    PubMed  PubMed Central  Google Scholar 

  35. Xu J, Zhao WM, Qian ZM, Guan J, Li SP (2010) Fast determination of five components of coumarin, alkaloids and bibenzyls in Dendrobium spp. using pressurized liquid extraction and ultra-performance liquid chromatography. J Separat Sci 33:1580–1586

    CAS  Google Scholar 

  36. Xu M, Liu X, Wang JW, Teng SY, Shi JQ, Li YY, Huang MR (2017a) Transcriptome sequencing and development of novel genic SSR markers for Dendrobium officinale. Molec Breed 37:18

    Google Scholar 

  37. Xu YY, Xu YS, Wang Y, Wu Q, Lu YF, Liu J, Shi JS (2017b) Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice. J Pharm Pharmacol 69:1409–1417

    CAS  PubMed  Google Scholar 

  38. Yamada Y, Sato F (2013) Chapter eight-transcription factors in alkaloid biosynthesis. In: Jeon KW (ed) International review of cell and molecular biology, vol. 305. Academic Press, pp 339–382

    Google Scholar 

  39. Yamada Y, Koyama T, Sato F (2011) Basic helix-loop-helix transcription factors and regulation of alkaloid biosynthesis. Plant Signal Behav 6:1627–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu C, Guo H, Zhang Y, Song Y, Pi E, Yu C, Zhang L, Dong M, Zheng B, Wang H, Shen C (2017) Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). Tree Physiol 37:1659–1671

    CAS  PubMed  Google Scholar 

  41. Yuan ZQ, Zhang JY, Liu T (2016) Enhancement of polysaccharides accumulation in Dendrobium officinale by exogenously applied methyl jasmonate. Biologia Plant 61:1–7

    Google Scholar 

  42. Yuan Y, Yu M, Jia Z, Song X, Liang Y, Zhang J (2018) Analysis of Dendrobium huoshanense transcriptome unveils putative genes associated with active ingredients synthesis. BMC Genom 19:978–978

    CAS  Google Scholar 

  43. Zhan X, Liao X, Luo X, Zhu Y, Feng S, Yu C, Lu J, Shen C, Wang H (2018) Comparative metabolomic and proteomic analyses reveal the regulation mechanism underlying MeJA-induced bioactive compound accumulation in cutleaf groundcherry (Physalis angulata L.) hairy roots. J Agric Food Chem 66:6336–6347

    CAS  PubMed  Google Scholar 

  44. Zhang J, He C, Wu K, Teixeira da Silva JA, Zeng S, Zhang X, Yu Z, Xia H, Duan J (2016) Transcriptome analysis of Dendrobium officinale and its application to the identification of genes associated with polysaccharide synthesis. Front Plant Sci 7:5

    PubMed  PubMed Central  Google Scholar 

  45. Zhang X-N, Liu J, Liu Y, Wang Y, Abozeid A, Yu Z-G, Tang Z-H (2018) Metabolomics analysis reveals that ethylene and methyl jasmonate regulate different branch pathways to promote the accumulation of terpenoid indole alkaloids in Catharanthus roseus. J Nat Prod 81:335–342

    CAS  PubMed  Google Scholar 

  46. Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Zhejiang Province, China (LQ17C150002 and LY19C160001), the Tree Breeding Project of Zhejiang Province, China (2016C02065) and the Project of Excellent Scientist Fund in Zhejiang Academy of Agricultural Sciences, China (2016R05R08E03).

Author information

Affiliations

Authors

Contributions

YC and YW conceived and designed the study. YC and PL collected and took care of the plant samples. YC, YW, LC, and CS (Chongbo Sun) performed the experiments. PL and CS (Chongbo Sun) analyzed the data. CS (Chenjia Shen) wrote the manuscript.

Corresponding author

Correspondence to Chongbo Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, Y., Lyu, P. et al. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. J Plant Res 132, 419–429 (2019). https://doi.org/10.1007/s10265-019-01099-6

Download citation

Keywords

  • Dendrobium
  • Alkaloid
  • Differential expressed genes
  • MVA and MEP pathways
  • P450 family