Advertisement

Journal of Plant Research

, Volume 132, Issue 2, pp 223–236 | Cite as

A new species of Liquidambar (Altingiaceae) from the late Eocene of South China

  • Natalia P. Maslova
  • Tatiana M. Kodrul
  • Alexei B. Herman
  • Ming Tu
  • Xiaoyan LiuEmail author
  • Jianhua JinEmail author
Regular Paper

Abstract

A new fossil leaf species, Liquidambar bella (Altingiaceae), is described from the lower part of the Eocene Huangniuling Formation, Maoming Basin, South China. Suprabasal venation in the fossil lobed Liquidambar leaves is reported for the first time. The new species provides additional palaeobotanical evidence on the morphological variability of this genus supporting the idea of combining the genera Liquidambar, Semiliquidambar and Altingia into the single genus Liquidambar as proposed based on molecular markers.

Keywords

Altingiaceae Eocene Huangniuling Formation Liquidambar Maoming Basin South China 

Notes

Acknowledgements

We are sincerely grateful to Prof. R. Spicer (Open University, UK) and the reviewers for valuable comments and suggestions. The research was supported by the National Natural Science Foundation of China (Grants nos. 41820104002, 41661134049, 41210001), the Russian Foundation for Basic Research (Grant no. 19-04-00046, to NM, in part to TK), and the State project no. 0135-2019-0044 (Geological Institute, Russian Acad. Sci., to AH, TK).

References

  1. Ablaev AG (1974) Additional data on the morphology of Liquidambar fossil leaves in Far East. In: Voprosy biostratigrafii sovetskogo Dal’nego Vostoka (Biostratigraphic issues of the soviet Far East). Far Eastern Sci Centre, USSR Acad Sci, Vladivostok, pp 113–117 (in Russian) Google Scholar
  2. Ablaev AG (1978) Geologiya i istoriya flor poberezhii Yaponskogo morya (pozdnemelovoye i tretichnoye vremya) [Geology and history of floras of the Sea of Japan coasts (in the Late Cretaceous and Tertiary)]. Nauka, Moscow (in Russian) Google Scholar
  3. Ablaev AG, Liy ZM, Khudik VD, Liy EK (1990) Khamchzhinskaya biota neogena Korei (voprosy stratigrafii, ekologii, klimata) [Neogene Khamchzha biota of Korea (issues on stratigraphy, ecology, climate)]. Far Eastern Branch USSR Acad Sci, Vladivostok (in Russian) Google Scholar
  4. Aleksandrova GN, Kodrul TM, Jin JH (2015) Palynological and paleobotanical investigations of Paleogene sections in the Maoming Basin, South China. Stratigr Geol Correl 23:300–325CrossRefGoogle Scholar
  5. Averianov A, Obraztsova E, Danilov I, Jin JH (2017) Anthracotheriid artiodactyls Anthracokeryx and an upper Eocene age for the Youganwo Formation of southern China. Hist Biol.  https://doi.org/10.1080/08912963.2017.1421639 Google Scholar
  6. Bogle AL (1986) The floral morphology and vascular anatomy of the Hamamelidaceae: subfamily Liquidambaroideae. Ann Mo Bot Gard 73:325–347CrossRefGoogle Scholar
  7. Brewer JS (2001) Current and presettlement tree species composition of some upland forests in northern Mississippi. J Torrey Bot Soc 128:332–349CrossRefGoogle Scholar
  8. Brown RW (1933) A Cretaceous sweet gum. Bot Gaz 94:611–615CrossRefGoogle Scholar
  9. Chase MW, Soltis DE, Olmstead RG et al (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Miss Bot Gard 80:528–580CrossRefGoogle Scholar
  10. Chen LX, Xiang WH, Wu HL, Lei PF, Zhang SL, Ouyang S, Deng XW, Fang X (2017) Tree growth traits and social status affect the wood density of pioneer species in secondary subtropical forest. Ecol Evol 7:5366–5377CrossRefGoogle Scholar
  11. Dong JL, Sun BN, Mao T, Yan D, Liu CH, Wang ZX, Jin PH (2018) Liquidambar (Altingiaceae) and associated insect herbivory from the Miocene of southeastern China. Palaeogeogr Palaeoclimatol Palaeoecol 497:11–24CrossRefGoogle Scholar
  12. Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, IthacaGoogle Scholar
  13. Endara M-J, Coley PD (2011) The resource availability hypothesis revisited: a metaanalysis. Funct Ecol 25:389–398CrossRefGoogle Scholar
  14. Endo S (1968) The flora from the Eocene Woodwardia Formation. Ishikari coal field, Hokkaido, Japan. Bull Nat Sci Mus 4:411–449Google Scholar
  15. Endo S, Morita H (1932) Notes on the genera Comptoniphyllum and Liquidambar. Sci Rep Tohoku Imper Univ 15:41–53Google Scholar
  16. Endress PK (1989a) Aspects of evolutionary differentiation of the Hamamelidaceae and the lower Hamamelididae. Plant Syst Evol 162:193–211CrossRefGoogle Scholar
  17. Endress PK (1989b) A suprageneric taxonomic classification of the Hamamelidaceae. Taxon 38:371–376CrossRefGoogle Scholar
  18. Endress PK, Igersheim A (1999) Gynoecium diversity and systematics of the basal eudicots. Bot J Linn Soc 130:305–393CrossRefGoogle Scholar
  19. Fang YM, Fan RW (1993) Variation and evolution of leaf trichomes in the Chinese Hamamelidaceae. Acta Phytotax Sin 31:147–152Google Scholar
  20. Ferguson DK (1971) The Miocene flora of Kreuzau, western German, I. The leaf-remains. North Holland Publishing, AmsterdamGoogle Scholar
  21. Ferguson DK (1989) A Survey of the Liquidambaroideae (Hamamelidaceae) with a view to elucidating its fossil record. In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae, 1: introduction and “Lower” Hamamelidae. Clarendon Press, Oxford, pp 249–272Google Scholar
  22. Graham A (1965) The Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. Kent State Univ Bull Res Ser IX 53:1–147Google Scholar
  23. He CX, Tao JR (1997) A study on the Eocene flora in Yilan County, Heilongjiang. Acta Phytotax Sin 35:249–256Google Scholar
  24. Herman AB, Spicer RA, Aleksandrova GN, Yang J, Kodrul TM, Maslova NP, Spicer TEV, Chen G, Jin JH (2017) Eocene–early Oligocene climate and vegetation change in southern China: evidence from the Maoming Basin. Palaeogeogr Palaeoclimatol Palaeoecol 479:126–137CrossRefGoogle Scholar
  25. Hoey MT, Parks CR (1994) Cenetic divergence in Liquidambar styraciflua, L. formasana and L. acalycina (Hamamelidaceae). Syst Bot 19:308–316CrossRefGoogle Scholar
  26. Hu HH, Chaney RW (1940) A Miocene flora from Shantung Province, China. Carnegie Inst Wash Publ 507:1–147Google Scholar
  27. Hufford LD, Crane PR (1989) A preliminary phylogenetic analysis of the “Lower” Hamamelidae. In: Crane PR, Blackmore S (eds) Evolution, systematics and fossil history of the Hamamelidae, 1: introduction and “Lower” Hamamelidae. Clarendon Press, Oxford, pp 175–192Google Scholar
  28. Huzioka K (1972) The Tertiary floras of Korea. J Min Coll Akita Univ Ser A 5:1–83Google Scholar
  29. Huzioka K (1974) The Miocene Daibo flora from the western end of Honshu, Japan. J Min Coll Akita Univ Ser A 2:85–108Google Scholar
  30. Huzioka K, Uemura K (1979) The Comptonia-Liquidambar forest during middle Miocene Daijima age in Japan. Rep Res Inst Undergr Resour Min Coll Akita Univ 45:37–50Google Scholar
  31. Ickert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Mol Phylogenet Evol 39:512–528CrossRefGoogle Scholar
  32. Ickert-Bond SM, Wen J (2013) A taxonomic synopsis of Altingiaceae with nine new combinations. PhytoKeys 31:21–61CrossRefGoogle Scholar
  33. Ickert-Bond SM, Pigg KB, Wen J (2005) Comparative infructescence morphology in Liquidambar (Altingiaceae) and its evolutionary significance. Am J Bot 92:1234–1255CrossRefGoogle Scholar
  34. Ickert-Bond SM, Pigg KB, Wen J (2007) Comparative infructescence morphology in Altingia (Altingiaceae) and discordance between morphological and molecular phylogenies. Am J Bot 94:1094–1115CrossRefGoogle Scholar
  35. Jin JH (2008) On the age of the Youganwo Formation in the Maoming Basin, Guangdong Province. J Stratigr 32:47–50Google Scholar
  36. Knowlton FH (1902) Fossil flora of the John Day basin, Oregon. US Geol Surv Bull 204:1–153Google Scholar
  37. Koch BE, Friedrich WL, Christiensen EF, Friis EM (1973) Den Miocæne brunkulsflora og dens geologiske milødi Soby-fasterholt området syd øst fur Herning. Dansk. Geologische foren Årsskrift 1972:1–57Google Scholar
  38. Kodrul TM, Maslova NP, Vasilenko DV, Herman AB, Xu QQ, Jin JH, Liu XY (2018) A preliminary assessment of plant–biotic interactions in the Eocene of South China: Evidence from Liquidambar L. (Saxifragales: Altingiaceae) //. Palaeogeogr Palaeoclimatol Palaeoecol 492:147–160CrossRefGoogle Scholar
  39. Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie. Gebrüder Bornträger, Berlin, pp 1–44Google Scholar
  40. Kuprianova LA (1960) Palynological data contributing to the history of Liquidambar. Pollen Spores 2:71–88Google Scholar
  41. Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils, Version 3.0. Smithsonian Institution, Washington, D.CGoogle Scholar
  42. Lai YJ, Li SJ, Wang WM (2018) Evolutionary trends in leaf morphology and biogeography of Altingiaceae based on fossil evidence. Palaeoworld 27:415–422CrossRefGoogle Scholar
  43. Lemoine NP, Burkepile DE, Parker JD (2017) Insect herbivores increase mortality and reduce tree seedling growth of some species in temperate forest canopy gaps. PeerJ 5:e3102CrossRefGoogle Scholar
  44. Li J, Bogle AL, Klein AS (1999) Phylogenetic relationships in the Hamamelidaceae: evidence from the nucleotide sequences of the plastid gene matK. Plant Syst Evol 218:205–219CrossRefGoogle Scholar
  45. MacGinitie HD (1941) A Middle Eocene flora from the Central Sierra Nevada. Carnegie Inst Wash Publ 534:1–178Google Scholar
  46. Manchester SR, Chen ZD, Geng BY, Tao JR (2005) Middle Eocene flora of Huadian, Jilin Province, Northeastern China. Acta Palaeobot 45:3–26Google Scholar
  47. Martinetto E (1998) East Asian elements in the Plio-Pleistocene floras of Italy. In: Zhang A, Sugong W (Eds) Proceedings of the international symposium of floristic characteristics and diversity of east Asian plants. Springer, Berlin, pp 71–87Google Scholar
  48. Maslova NP (1995) Liquidambar L. from the Cenozoic of Eastern Asia. Paleontol J 29:145–158Google Scholar
  49. Maslova NP (2003) Extinct and extant Platanaceae and Hamamelidaceae: morphology, systematics, and phylogeny. Paleontol J 5 Suppl:467–589Google Scholar
  50. Maslova NP (2010) Systematics of fossil platanoids and hamamelids. Paleontol J 44:1379–1466CrossRefGoogle Scholar
  51. Maslova NP, Kodrul TM, Song YS, Volkova LD, Jin JH (2015) Liquidambar maomingensis sp. nov. (Altingiaceae) from the late Eocene of South China. Am J Bot 102:1356–1370CrossRefGoogle Scholar
  52. Maslova NP, Karasev EV, Kodrul TM, Spicer RA, Volkova LD, Spicer TEV, Jin JH, Liu XY (2018) Sun and shade leaf variability in Liquidambar chinensis Champion and Liquidambar formosana Hanse (Altingiaceae): implications for paleobotany. Bot J Linn Soc 188:296–315Google Scholar
  53. Matsuo H (1970) Palaeogene floras of northwestern Kyushu, part 2: The Sakito flora. Ann Sci Coll Liberal Arts Kanazawa Univ 7:13–62Google Scholar
  54. Melchior RC (1998) Paleobotany of the Williamsburg Formation (Paleocene) at the Santee Rediversion site, Berkeley County, South Carolina. In: Sanders AE (ed) Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene) of South Carolina, USA. Trans Am Philosoph Soc, vol 4, pp 49–121Google Scholar
  55. Muller J (1981) Fossil pollen records of extant angiosperms. Bot Rev 47:1–142CrossRefGoogle Scholar
  56. Onoe T (1974) A Middle Miocene flora from Ogunimachi, Yamagata Prefecture, Japan. Rep Geol Surv Jpn 253:1–64Google Scholar
  57. Ozaki K (1991) Late Miocene and Pliocene floras in Central Honshu, Japan. Bull Kanagawa Prefect Mus Nat Sci Spec Issue:1–244Google Scholar
  58. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  59. Pigg KB, Ickert-Bond SM, Wen J (2004) Anatomically preserved Liquidambar (Altingiaceae) from the Middle Miocene of Yakima Canyon, Washington state, USA, and its biogeographic implications. Am J Bot 91:499–509CrossRefGoogle Scholar
  60. Shi SY, Huang Y, Zhong Y, Du Q, Zhang H, Chang H, Boufford DE (2001) Phylogeny of the Altingiaceae based on cpDNA matK, PY-IGS and nrDNA ITS sequences. Plant Syst Evol 230:13–24CrossRefGoogle Scholar
  61. Smiley CJ, Gray J, Huggins LM (1975) Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho. With a section on fossil insect by W F Barr and J M Gillespie. J Paleontol 49:833–844Google Scholar
  62. Spicer RA (2017) Tibet, the Himalaya, Asian monsoons and biodiversity—in what ways are they related? Plant Divers.  https://doi.org/10.1016/j.pld.2017.09.001 Google Scholar
  63. Spicer RA, Yang J, Herman AB, Kodrul T, Maslova N, Spicer TEV, Aleksandrova G, Jin JH (2016) Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet Sci Lett 449:61–68CrossRefGoogle Scholar
  64. Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu XY, Jin JH (2017) Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res 49:350–363CrossRefGoogle Scholar
  65. Stults DZ, Axsmith BJ (2011) Filling the gaps in the Neogene plant fossil record of eastern North America: new data from the Pliocene of Alabama. Rev Palaeobot Palynol 167:1–9CrossRefGoogle Scholar
  66. Sun R, Lin F, Huang P, Zheng Y (2016) Moderate genetic diversity and genetic differentiation in the relict tree Liquidambar formosana Hance revealed by genic simple sequence repeat markers. Front Plant Sci 7:1411.  https://doi.org/10.3389/fpls.2016.01411 Google Scholar
  67. Suzuki K (1961) The important and characteristic Pliocene and Miocene species of plants from the southern parts of the Tohoku District, Japan. Sci Rep Fac Arts Sci Fukushima Univ 10:1–95Google Scholar
  68. Takhtajan AL (2009) Flowering plants, 2nd edn. Columbia Univ. Press, New YorkCrossRefGoogle Scholar
  69. Tanai T (1967) On the Hamamelidaceae from the Palaeogene of Hokkaido, Japan. Trans Proc Palaeontol Soc Jpn New Ser 66:56–62Google Scholar
  70. Tanai T (1970) The Oligocene Floras from the Kushiro Coal Field, Hokkaido, Japan. J Fac Sci Hokkaido Univ Ser 4 Geol Miner 14:383–514Google Scholar
  71. Tanai T (1976) Revision of the Pliocene Mogi flora, described by Nathorst (1883) and Florin (1920). J Fac Sci Univ Tokyo Sect 17:277–346Google Scholar
  72. Uemura K (1983) Late Neogene Liquidambar (Hamamelidaceae) from the southern part of northeast Honshu, Japan. Mem Nat Sci Mus Tokyo 16:25–36Google Scholar
  73. Wen J (1998) Evolution of the eastern Asian and eastern North American disjunct pattern: insights from phylogenetic studies. Korean J Plant Taxon 28:63–81CrossRefGoogle Scholar
  74. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455CrossRefGoogle Scholar
  75. Wheeler EA, Lee SJ, Baas P (2010) Wood anatomy of the Altingiaceae and Hamamelidaceae. IAWA J 31:399–423CrossRefGoogle Scholar
  76. Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv Bull 2040:1–73Google Scholar
  77. Wolfe JA, Tanai T (1980) The Miocene Seldovia Point flora from the Kenai Group, Alaska. US Geol Surv Bull Prof Pap 1105:1–52Google Scholar
  78. Worobiec G, Worobiec E, Szynkiewicz A (2012) Plant assemblage from the Upper Miocene deposits of the Bełchatow Lignite Mine (Central Poland). Acta Palaeobot 52:369–413Google Scholar
  79. Xiao L, Sun B, Li X, Ren W, Jia H (2011) Anatomical variations of living and fossil Liquidambar leaves: A proxy for paleoenvironmental reconstruction. Sci Chin Earth Sci 54:493–508.  https://doi.org/10.1007/s11430-010-4135-4 CrossRefGoogle Scholar
  80. Xiao L, Yang H, Sun B, Li X, Guo J (2013) Stable isotope compositions of recent and fossil sun/shade leaves and implications for palaeoenvironmental reconstruction. Rev Palaeobot Palynol 190:75–84.  https://doi.org/10.1016/j.revpalbo.2012.10.002 CrossRefGoogle Scholar
  81. Xiao L, Yang H, He YL, He WL, Li XC, Guo JF, Hui KX (2015) Biomolecular preservation of Miocene fossil Liquidambar from Tiantai, China and Clarkia, USA: Implications for palaeoenvironmental study. Acta Geol Sin (Engl Ed) 89:801–840Google Scholar
  82. Yang J, Spicer RA, Spicer TEV, Li CS (2011) ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodivers Palaeoenviron 91:163–183CrossRefGoogle Scholar
  83. Zhang ZY, Lu AM (1995) Hamamelidaceae: geographic distribution, fossil history and origin. Acta Phytotaxon Sin 33:313–339Google Scholar
  84. Zhou ZK, Crepet WL, Nixon KC (2001) The earliest fossil evidence of the Hamamelidaceae: Late Cretaceous (Turonian) inflorescences and fruits of Altingioideae. Am J Bot 88:753–766CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Natalia P. Maslova
    • 1
    • 2
  • Tatiana M. Kodrul
    • 1
    • 3
  • Alexei B. Herman
    • 3
  • Ming Tu
    • 1
  • Xiaoyan Liu
    • 1
    Email author
  • Jianhua Jin
    • 1
    Email author
  1. 1.State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and School of Life SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations