Expression of a tobacco nicotine biosynthesis gene depends on the JRE4 transcription factor in heterogenous tomato

Abstract

The jasmonate-responsive transcription factor ERF189 in tobacco (Nicotiana tabacum) and its ortholog JRE4 in tomato (Solanum lycopersicum) regulate a series of biosynthetic genes involved in the nicotine and steroidal glycoalkaloid pathways. In tobacco, QUINOLINATE PHOSPHORIBOSYL TRANSFERASE 2 (NtQPT2) is regulated by ERF189; however, we found that the tomato QPT gene is not regulated by JRE4. Here, we explored whether and how NtQPT2 is regulated in a heterogenous tomato host. We used a NtQPT2 promoter-driven reporter gene to examine the cell type-specific and jasmonate-induced expression of this gene in transgenic tomato hairy roots. The downregulation of the reporter in the jre4 loss-of-function tomato mutant and its transactivation by JRE4 in transient expression experiments suggested that JRE4, like its ortholog ERF189 in tobacco, activates the NtQPT2 promoter in tomato. We discuss the evolution of QPT2 in the Nicotiana lineage, which mainly occurred through mutational changes in the promoter that altered the control of the functionally conserved transcription factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdelkareem A, Thagun C, Nakayasu M, Mizutani M, Hashimoto T, Shoji T (2017) Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem Biophys Res Commun 489:206–210

    CAS  Article  Google Scholar 

  2. Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    CAS  Article  Google Scholar 

  3. Cárdenas PD, Sonawane PD, Pollier J, Bossche RV, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S, Aharoni A (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654

    Article  Google Scholar 

  4. Chase MW, Knapp S, Cox AV, Clarkson JJ, Butskon Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127

    CAS  Article  Google Scholar 

  5. Kajikawa M, Sierro N, Kawaguchi H, Bakaher N, Ivanov NV, Hashimoto T, Shoji T (2017) Genomic insights into the evolution of the nicotine biosynthesis pathway in tobacco. Plant Physiol 174:999–1011

    CAS  Article  Google Scholar 

  6. Katoh A, Hashimoto T (2004) Molecular biology of pyridine nucleotide and nicotine biosynthesis. Front Biosci 9:1577–1586

    CAS  Article  Google Scholar 

  7. Kumar S, Stecher G, Li m, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  Article  Google Scholar 

  8. Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y, Ariizumi T, Arimura G, Mizutani M, Ezura H, Hashimoto T, Shoji T (2018) JRE4 is a master transcription regulator of defense-related steroidal glycoalkaloids in tomato. Plant J 94:975–990

    CAS  Article  Google Scholar 

  9. Patra B, Schluttenhofer C, Wu Y, Pattanaik S, Yuan L (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochem Biophys Acta 1892:1236–1247

    Google Scholar 

  10. Ryan SM, Cane KA, DeBoer KD, Sinclair SJ, Brimblecombe R, Hamill JD (2012) Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana. Plant Sci 188–189:102–110

    Article  Google Scholar 

  11. Shoji T (2018) Analysis of the intracellular localization of transiently expressed and fluorescently labeled copper-containing amine oxidases, diamine oxidase and N-methylputrescine oxidase in tobacco, using an Agrobacterium infiltration protocol. Methods Mol Biol 1694:215–223

    CAS  Article  Google Scholar 

  12. Shoji T, Hashimoto T (2011) Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant J 67:949–959

    CAS  Article  Google Scholar 

  13. Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    CAS  Article  Google Scholar 

  14. Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440

    CAS  Article  Google Scholar 

  15. Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, Yazaki K, Goto K, Toyooka K, Matsuoka K, Hashimoto T (2009) Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149:708–718

    CAS  Article  Google Scholar 

  16. Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    CAS  Article  Google Scholar 

  17. Shoji T, Mishima M, Hashimoto T (2013) Divergent DNA-binding specificities of a group of ethylene response factor transcription factors involved in plant defense. Plant Physiol 162:977–990

    CAS  Article  Google Scholar 

  18. Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QRPTase) in Nicotiana. Plant Mol Biol 44:603–617

    CAS  Article  Google Scholar 

  19. Thagun C, Imanishi S, Kudo T, Nakabayashi R, Ohyama K, Mori T, Kawamoto K, Nakamura Y, Katayama M, Nonaka S, Matsukura C, Yano K, Ezura H, Saito K, Hashimoto T, Shoji T (2016) Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol 57:961–975

    CAS  Article  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  Article  Google Scholar 

  21. Voinnet O, Rivas S, Mestre P, Baulcomb D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy virus. Plant J 33:949–956

    CAS  Article  Google Scholar 

  22. Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR (2017) Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355:71–75

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Ayaka Tsujii (NAIST) for the technical assistance and Dr. Yoshinori Yagi (Nagoya University) for providing the p35S-GFP vector. The tomato seeds were provided by the National BioResource Project (NBRP), MEXT, Japan.

Funding

This work was supported in part by the Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research number 17K07447 to TS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsubasa Shoji.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 150 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shoji, T., Hashimoto, T. Expression of a tobacco nicotine biosynthesis gene depends on the JRE4 transcription factor in heterogenous tomato. J Plant Res 132, 173–180 (2019). https://doi.org/10.1007/s10265-018-1075-0

Download citation

Keywords

  • Jasmonates
  • Quinolinate phosphoribosyl transferase gene
  • Tobacco
  • Tomato
  • Transcription factor