Journal of Plant Research

, Volume 132, Issue 1, pp 49–56 | Cite as

Pollination features and floral volatiles of Gymnospermium scipetarum (Berberidaceae)

  • Leonardo RosatiEmail author
  • Vito Antonio Romano
  • Luca Cerone
  • Simonetta Fascetti
  • Giovanna Potenza
  • Erika Bazzato
  • Davide Cillo
  • Marisabel Mecca
  • Rocco Racioppi
  • Maurizio D’Auria
  • Emmanuele Farris
Regular Paper


The discovery of few isolated populations of Gymnospermium scipetarum (since now considered as an amphi-Adriatic endemic) in the S-Apennines prompted to investigate, also for conservation purposes, some aspects of its reproductive biology. We aim: (1) to determine if insects play an important role in pollination; (2) to describe the pollinator community; (3) to detect floral scent composition. Experiments of insect exclusion were carried out in the field using 24 flowering individuals: one raceme was capped whereas the nearest one was used as control to ascertain differences in seed set. Pollinator community was detected during the blooming phase of two consecutive flowering seasons by visual observation; insect identification was made at the highest possible taxonomic resolution with the help of digital photographs. In order to determine the chemical composition of the volatiles, we used SPME sampling of cultivated plants. Mann–Whitney U test reveals significant differences for treatment in mean seed set with very low values for capped flowers, thus clearly indicating as insects are crucial for successful pollination. During the 42 h of observations we detected 326 visitors belonging to only three guilds: 79% were Diptera, 20% Hymenoptera and 1% Coleoptera. We identified overall 36 floral organic compounds with only two compounds common to the other studied Berberidaceae. Ambrox was never identified before in the floral scents of any angiosperm. The presence in the scent of several aldehydes and one ketone (benzophenone) could be related to the detected dominance of muscoid flies as pollinators. Floral morphology and composition of the pollinators community indicate a generalist pollination behaviour probably related to its phenology and habitat preference. The possibility of being pollinated also by muscoid flies can be considered an advantage for the reproductive fitness of the species, since these Diptera are abundant in the mountain pastures surrounding the forest habitat of Gymnospermium.


Ambrox Endangered plants Floral scent Pollination Reproductive biology Self-incompatibility 

Supplementary material

10265_2018_1073_MOESM1_ESM.pdf (150 kb)
Supplementary material 1 (PDF 149 KB)


  1. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linnean Soc 181:1–20CrossRefGoogle Scholar
  2. Barina Z, Caković D, Pifkó D et al (2017) Phylogenetic relationships, biogeography and taxonomic revision of European taxa of Gymnospermium (Berberidaceae). Bot J Linnean Soc 184:298–311CrossRefGoogle Scholar
  3. Bergström G, Dodson HME, Groth I (1995) Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst Evol 195:221–242CrossRefGoogle Scholar
  4. Bodley EJ, Beggs JR, Toft R, Gaskett AC (2016) Flowers, phenology and pollination of the endemic New Zealand greenhood orchid Pterostylis brumalis. New Zeal J Bot 54:291–310CrossRefGoogle Scholar
  5. Butler LI, McDonough LM (1981) Insect sex pheromones: evaporation rates of alcohols and acetates from natural rubber septa. J Chem Ecol 7:627–633CrossRefGoogle Scholar
  6. Chatterjee S, Karmakar A, Azmi SA, Barik A (2017) Antibacterial activity of long-chain primary alcohols from Solena amplexicans leaves. Proc Zool Soc. Google Scholar
  7. Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201. CrossRefGoogle Scholar
  8. Crane PR, Herendeen PS, Friis EM (2004) Fossils and plant phylogeny. Am J Bot 91:1683–1699CrossRefGoogle Scholar
  9. Dahl ÅE, Wassgren AB, Bergström G (1990) Floral scents in Hypecoum sect. Hypecoum (Papaveraceae): chemical composition and relevance to taxonomy and mating system. Biochem Syst Ecol 18:157CrossRefGoogle Scholar
  10. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC, Boca RatonGoogle Scholar
  11. Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectivesThe present review is one in the special series of reviews on animal–plant interactions. Can J Zool 88:668–697. CrossRefGoogle Scholar
  12. Elberling H, Olesen JM (1999) The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography 22:314–323CrossRefGoogle Scholar
  13. Ervik F, Knudsen JT (2003) Water lilies and scarabs: faithful partners for 100 million years? Biol J Linn Soc 80:539CrossRefGoogle Scholar
  14. Faegri K, van der Pijl L (1979) Principles of pollination ecology. Pergamon, OxfordGoogle Scholar
  15. Fenster CB, Armbruster WS, Wilson P et al (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403. CrossRefGoogle Scholar
  16. Fisogni A, Cristofolini G, Podda L, Galloni M (2011) Reproductive ecology in the endemic Primula apennina Widmer (Primulaceae). Plant Biosyst 145:353–361. CrossRefGoogle Scholar
  17. Goldblatt P, Bernhardt P, Vogan P, Manning JC (2004) Pollination by fungus gnats (Diptera: Mycetophilidae) and self-recognition site in Tolmiea menziesii (Saxifragaceae). Plant Syst Evol 244:55–67CrossRefGoogle Scholar
  18. Gong X, Guan BC, Zhou SL, Ge G (2015) Reproductive biology of the rare plant, Dysosma pleiantha (Berberidaceae): breeding system, pollination and implications for conservation. Pakistan J Bot 47:951–957Google Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  20. Hu S, Dilcher DL, Jarzen DM, Winship Taylor D (2008) Early steps of angiosperm pollinator coevolution. Proceed Natl Acad Sci 105:240–245. CrossRefGoogle Scholar
  21. IUCN (2012) IUCN red list categories and criteria: version 3.1, 2nd edn. IUCN, GlandGoogle Scholar
  22. Kay KM, Voelckel C, Yang JY et al (2006) Floral characters and species diversification. In: Harder L, Barrett S (eds) Ecology and evolution of flowers. Oxford University Press, OxfordGoogle Scholar
  23. Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. Am Midi Nat 127:172–182CrossRefGoogle Scholar
  24. Kearns CA (2001) North American dipteran pollinators: assessing their value and conservation status. Conserv Ecol 5:5CrossRefGoogle Scholar
  25. Kim Y-D, Kim S-H, Kim CH, Jansen RK (2004) Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF. Biochem Syst Ecol 32:291–301. CrossRefGoogle Scholar
  26. Kim H, Kim Y-S, Son S-W (2016) Gymnospermium microrrhynchum. The IUCN Red List of Threatened Species 2016: e.T13188457A13189469.
  27. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120.;2 CrossRefGoogle Scholar
  28. Kreuzwieser J, Scheerer U, Kruse J et al (2014) The Venus flytrap attracts insects by the release of volatile organic compounds. J Exp Bot 65:755–766. CrossRefGoogle Scholar
  29. Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518CrossRefGoogle Scholar
  30. Loconte H, Estes JR (1989) Generic relationships within Leonticeae (Berberidaceae). Can J Bot 67:2310–2316CrossRefGoogle Scholar
  31. Mikatadze-Pantsulaia T, Barblishvili T, Trivedi C et al (2010) Ex situ conservation of some endemic and protected plant species in Georgia. Kew Bull 65:643–648. CrossRefGoogle Scholar
  32. Minuto L, Guerrina M, Roccotiello E et al (2014) Pollination ecology in the narrow endemic winter-flowering Primula allionii (Primulaceae). J Plant Res 127:141–150. CrossRefGoogle Scholar
  33. Motten AF (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogr 56:21–42CrossRefGoogle Scholar
  34. Naef A, Roy BA, Kaiser R, Honegger R (2002) Insect-mediated reproduction of systemic infections by Puccinia arrhenatheri on Berberis vulgaris. New Phytol 154:717–730. CrossRefGoogle Scholar
  35. Ollerton J, Alarcon R, Waser NM et al (2009) A global test of the pollination syndrome hypothesis. Ann Bot 103:1471–1480. CrossRefGoogle Scholar
  36. Picone J (2002) Emission of floral volatiles from Mahonia japonica (Berberidaceae). Phytochemistry 60:611–617. CrossRefGoogle Scholar
  37. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569CrossRefGoogle Scholar
  38. Ronse De Craene L (2018) Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. J Plant Res. Google Scholar
  39. Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S et al (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400. CrossRefGoogle Scholar
  40. Rosati L, Farris E, Tilia A, Potenza G, Fascetti S (2014) Gymnospermium scipetarum (Berberidaceae) specie nuova per la flora italiana. In: Peruzzi L, Domina G (eds) Floristica, sistematica ed evoluzione, comunicazioni. Società Botanica Italiana, RomeGoogle Scholar
  41. Rosati L, Coppi A, Farris E, Fascetti S, Becca G, Peregrym M, Tan K, Selvi F. The genus Gymnospermium (Berberidaceae) in Italy: identity and relationships of the populations at the western limit of the genus range. Plant Biosyst (in press) Google Scholar
  42. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315. CrossRefGoogle Scholar
  43. Ssymank A, Kearns CA, Pape T, Thompson FC (2008) Pollinating Flies (Diptera): a major contribution to plant diversity and agricultural production. Biodiversity 9:86–89. CrossRefGoogle Scholar
  44. Suzuki K (1983) Breeding system and crossability in Japanese Epimedium (Berberidaceae). Bot Mag Tokyo 96:343–350. CrossRefGoogle Scholar
  45. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  46. Waser NM, Chittka L, Price MV et al (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060. CrossRefGoogle Scholar
  47. Zapata TR, Arroyo MTK (1978) Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 10:221–230CrossRefGoogle Scholar
  48. Zerbe P, Bohlmann J (2015) Enzymes for synthetic biology of ambroxide-related diterpenoid fragrance compounds. In: Schrader J, Bohlmann J (eds) Biotechnology of Isoprenoids. Springer, Cham, pp 427–447CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Leonardo Rosati
    • 1
    Email author
  • Vito Antonio Romano
    • 2
  • Luca Cerone
    • 1
  • Simonetta Fascetti
    • 1
  • Giovanna Potenza
    • 1
  • Erika Bazzato
    • 3
  • Davide Cillo
    • 4
  • Marisabel Mecca
    • 2
  • Rocco Racioppi
    • 2
  • Maurizio D’Auria
    • 2
  • Emmanuele Farris
    • 5
  1. 1.Scuola di Scienze Agrarie, Forestali, Alimentari e AmbientaliUniversità della BasilicataPotenzaItaly
  2. 2.Dipartimento di ScienzeUniversità della BasilicataPotenzaItaly
  3. 3.Dipartimento di Scienze della Vita e dell’AmbienteUniversità degli Studi di CagliariCagliariItaly
  4. 4.CagliariItaly
  5. 5.Dipartimento di Chimica e FarmaciaUniversità di SassariSassariItaly

Personalised recommendations