Agathokleous E, Kitao M, Kinose Y (2018) A review study on O3 phytotoxicity metrics for setting critical levels in Asia. Asian J Atmos Environ 12:1–16
CAS
Article
Google Scholar
Akimoto H, Mori Y, Sasaki K, Nakanishi H, Ohizumi T, Itano Y (2015) Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: causes of temporal and spatial variation. Atmos Environ 102:302–310
CAS
Article
Google Scholar
Barnes JD, Balaguer L, Manrique E, Elvira S, Davison (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100
CAS
Article
Google Scholar
Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259
CAS
Article
Google Scholar
Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998
CAS
PubMed
PubMed Central
Article
Google Scholar
Bytnerowicz A, Arbaugh M, Schilling S, Frączek W, Alexander D (2008) Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California. Environ Pollut 155:398–408
CAS
PubMed
Article
Google Scholar
Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431
CAS
PubMed
Article
Google Scholar
Egert M, Tevini M (2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ Exp Bot 48:43–49
CAS
Article
Google Scholar
Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ 18:43–51
Article
Google Scholar
Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90
CAS
PubMed
Article
Google Scholar
Feng Z, Paoletti E, Bytnerowicz A, Harmens H (2015) Ozone and plants. Environ Pollut 202:215–216
CAS
PubMed
Article
Google Scholar
Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298
CAS
PubMed
Article
Google Scholar
Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriqui M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina J, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84
PubMed
Article
CAS
Google Scholar
Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198
CAS
Article
Google Scholar
Gao F, Calatayud V, García-Breijo F, Reig-Armiñana J, Feng Z (2016) Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecol Indic 67:367–379
Article
CAS
Google Scholar
Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Sub 990:87–92
CAS
Article
Google Scholar
Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436
CAS
PubMed
PubMed Central
Article
Google Scholar
Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254
Google Scholar
Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls in the interspecifc variation in photosynthetic capacity. Oecologia 160:443–451
PubMed
Article
Google Scholar
Hoshika Y, Watanabe M, Inada N, Mao Q, Koike T (2013) Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure. Environ Pollut 182:242–247
CAS
PubMed
Article
Google Scholar
Inada H, Kondo T, Akhtar N, Hoshino D, Yamaguchi M, Izuta T (2012) Relationship between cultivar difference in the sensitivity of net photosynthesis to ozone and reactive oxygen species scavenging system in Japanese winter wheat (Triticum aestivum). Physiol Plant 146:217–227
CAS
PubMed
Article
Google Scholar
Kinose Y, Azuchi F, Uehara Y, Kanomata T, Kobayashi A, Yamaguchi M, Izuta T (2014) Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla. Environ Pollut 194:235–245
CAS
PubMed
Article
Google Scholar
Kinose Y, Fukamachi Y, Okabe S, Hiroshima H, Watanabe M, Izuta T (2017a) Nutrient supply to soil offsets the ozone-induced growth reduction in Fagus crenata seedlings. Trees 31:259–272
CAS
Article
Google Scholar
Kinose Y, Fukamachi Y, Okabe S, Hiroshima H, Watanabe M, Izuta T (2017b) Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions. Environ Pollut 223:213–222
CAS
PubMed
Article
Google Scholar
Koike T, Watanabe M, Hoshika Y, Kitao M, Matsumura H, Funada R, Izuta T (2013) Effects of ozone on forest ecosystems in East and Southeast Asia. In: Matyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges: understanding and perspectives from forest research. Elsevier, Oxford, pp 371–390
Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
CAS
PubMed
Article
Google Scholar
Li P, Feng Z, Catalayud V, Yuan X, Xu Y, Paoletti E (2017) A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ 40:2369–2380
CAS
PubMed
Article
Google Scholar
Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401
CAS
PubMed
Article
Google Scholar
Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404
CAS
Article
Google Scholar
Mizokami Y, Noguchi K, Kojima M, Sakakibara H, Terashima I (2015) Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant Cell Environ 38:388–398
CAS
PubMed
Article
Google Scholar
Moualeu-Ngangue DP, Chen T, Stűtzel H (2017) A new method to estimate photosynthetic parameters through net assimilation rate–intercellular space CO2 concentration (A–C
i) curve and chlorophyll fluorescence measurements. New Phytol 213:1543–1554
CAS
PubMed
Article
Google Scholar
Nakaji T, Izuta T (2001) Effects of ozone and/or excess soil nitrogen on growth, needle gas exchange rates and Rubisco contents of Pinus densiflora seedlings. Water Air Soil Pollut 130:971–976
Article
Google Scholar
Nakashizuka T, Iida S (1995) Composition, dynamics and disturbance regime of temperate deciduous forests in Monsoon Asia. Vegetatio 121:23–30
Article
Google Scholar
Niu J, Feng Z, Zhang W, Zhao P, Wang X (2014) Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3. PLoS One 9:e98572
PubMed
PubMed Central
Article
CAS
Google Scholar
Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369
CAS
PubMed
Article
Google Scholar
Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, Bastrup-Birk AM, Bytnerowicz A, Günthardt-Goerg MS, Müller-Starck G, Serengil Y (2010) Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environ Pollut 158:1986–1989
CAS
PubMed
Article
Google Scholar
Paoletti E, De Marco A, Beddows DCS, Harrison RM, Manning WJ (2014) Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ Pollut 192:295–299
CAS
Article
PubMed
Google Scholar
Pell EJ, Eckardt N, Enyedi AJ (1992) Timing of ozone stress and resulting status of ribulose bisphosphate carboxylase/oxygenase and associated net photosynthesis. New Phytol 120:397–405
CAS
Article
Google Scholar
Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273
CAS
Article
Google Scholar
R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 17 Jan 2018
Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70
Google Scholar
Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794
CAS
PubMed
Article
Google Scholar
Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F (2005) Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol 25:1523–1532
CAS
PubMed
Article
Google Scholar
von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood
Book
Google Scholar
Warren CR, Löw M, Matyssek R, Tausz M (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ Exp Bot 59:130–138
CAS
Article
Google Scholar
Watanabe M, Yonekura T, Honda Y, Yoshidome M, Nakaji T, Izuta T (2005) Effects of ozone and soil water stress, singly and in combination, on leaf antioxidative systems of Fagus crenata seedlings. J Agric Meteorol 60:1105–1108
Article
Google Scholar
Watanabe M, Hoshika Y, Inada N, Wang X, Mao Q, Koike T (2013) Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environ Pollut 174:50–56
CAS
PubMed
Article
Google Scholar
Watanabe M, Hoshika Y, Koike T (2014) Photosynthetic responses of Monarch birch seedlings to differing timing of free air ozone fumigation. J Plant Res 127:339–345
CAS
Article
PubMed
Google Scholar
Watanabe M, Hoshika Y, Koike T, Izuta T (2017) Effects of ozone on Japanese trees. In: Izuta T (ed) Air pollution impacts on plant in East Asia. Springer Japan, Tokyo, pp 73–100
Chapter
Google Scholar
Werner H, Fabian P (2002) Free-air fumigation of mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sci Pollut Res 9:117–121
Article
Google Scholar
Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162
CAS
PubMed
Article
Google Scholar
Xiong D, Liu X, Liu L, Douthe C, Li Y, Peng S, Huang J (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ 38:2541–2550
CAS
PubMed
Article
Google Scholar
Yamaguchi M, Watanabe M, Iwasaki M, Tabe C, Matsumura H, Kohno Y, Izuta T (2007) Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees 21:707–718
CAS
Article
Google Scholar
Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian J Atmos Environ 5:65–87
CAS
Article
Google Scholar
Yonekura T, Dokiya Y, Fukami M, Izuta T (2001) Effects of ozone and/or soil water stress on growth and photosynthesis of Fagus crenata seedlings. Water Air Soil Pollut 130:965–970
Article
Google Scholar
Zhang J, Schaub M, Ferdinand JA, Skelly JM, Steiner KC, Savage JE (2010) Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings. Environ Pollut 158:2627–2634
CAS
PubMed
Article
Google Scholar
Zhang W, Feng Z, Wang X, Niu J (2014) Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng. Plant Sci 226:182–188
CAS
PubMed
Article
Google Scholar