Phylogenetic analysis reveals the origins of tetraploid and hexaploid species in the Japanese Lepisorus thunbergianus (Polypodiaceae) complex

Abstract

The Japanese Lepisorus thunbergianus complex contains diploid and tetraploid races of L. thunbergianus and a hexaploid species, L. mikawanus. Here, we performed molecular phylogenetic analysis on this complex to delimit species and to elucidate the evolutionary origins of tetraploid and hexaploid species. Chloroplast DNA (cpDNA) phylogeny supported the monophyly of the complex. Based on a single-copy nuclear gene (PgiC) tree, the tetraploid L. thunbergianus samples could be classified into two variants: an allotetraploid of hybrid origin between diploid L. thunbergianus and Japanese L. angustus and another allotetraploid of hybrid origin between diploid L. thunbergianus and an unknown diploid race of L. tosaensis. These variants can be recognized morphologically and distinguished from their parent species. Hence, here we described these allopolyploids as new species, L. nigripes and L. kuratae, respectively. The hexaploid species L. mikawanus has three types of PgiC alleles, each of which was derived from diploid L. thunbergianus, L. tosaensis, and Japanese L. angustus, while cpDNA shows that it is included in Japanese L. thunbergianus clade. Based on the cpDNA phylogeny and PgiC nucleotide sequences, we therefore concluded that L. mikawanus is an allohexaploid that originated through hybridization between tetraploid species, L. nigripes and an unknown ancestral diploid race of L. tosaensis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adjie B, Masuyama S, Ishikawa H, Watano Y (2007) Independent origins of tetraploid cryptic species in the fern Ceratopteris thalictroides. J Plant Res 120:129–138

    CAS  PubMed  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  3. Barrington DS, Paris CA, Ranker TA (1986) Systematic inferences from spore and stomate size in the ferns. Am Fern J 76:149–159

    Google Scholar 

  4. Barrington DS, Haufler CH, Werth CR (1989) Hybridization, reticulation, and species concepts in the ferns. Am Fern J 79:55–64

    Google Scholar 

  5. Beck JB, Allison JR, Pryer KM, Windham MD (2012) Identifying multiple origins of polyploid taxa: a multilocus study of the hybrid cloak fern (Astrolepis integerrima; Pteridaceae). Am J Bot 99:1857–1865

    PubMed  Google Scholar 

  6. Chang Y, Li J, Lu S, Schneider H (2013) Species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon 62:673–687

    Google Scholar 

  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  8. Dyer RJ, Savolainen V, Schneider H (2012) Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Ann Bot 110:1515–1529

    PubMed  PubMed Central  Google Scholar 

  9. Ebihara (2017) The standard of ferns and lycophytes in Japan, vol II. Gakken Plus, Tokyo (in Japanese)

    Google Scholar 

  10. Ebihara A, Ishikawa H, Matsumoto S, Lin S-J, Iwatsuki K, Takamiya M, Watano Y, Ito M (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in japan and adjacent areas. Am J Bot 92:1535–1547

    CAS  PubMed  Google Scholar 

  11. Fujiwara T, Uehara A, Iwashina T, Matsumoto S, Chang Y-H, Chao Y-S, Watano Y (2017) Allotetraploid cryptic species in Asplenium normale in the Japanese Archipelago, detected by chemotaxonomic and multi-locus genotype approaches. Am J Bot 104:1390–1400

    CAS  PubMed  Google Scholar 

  12. Gastony GJ, Yatskievych G (1992) Maternal inheritance of the chloroplast and mitochondrial genomes in cheilanthoid ferns. Am J Bot 79:716–722

    CAS  Google Scholar 

  13. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  14. Hennipman E, Kramer KU, Veldhoen P (1990) Polypodiaceae. In: Kubitzki K, Green PS (eds) The families and genera of vascular plants, vol 1. Springe, Berlin, pp 203–230

    Google Scholar 

  15. Hori K, Tono A, Fujimoto K, Kato J, Ebihara A, Watano Y, Murakami N (2014) Reticulate evolution in the apogamous Dryopteris varia complex (Dryopteridaceae, subg. Erythrovariae, sect. Variae) and its related sexual species in Japan. J Plant Res 127:661–684

    PubMed  Google Scholar 

  16. Huang Y-M, Chou H-M, Hsieh T-H, Wang J-C, Chiou W-L (2006) Cryptic characteristics distinguish diploid and triploid varieties of Pteris fauriei (Pteridaceae). Can J Bot 84:261–268

    Google Scholar 

  17. Ishikawa H, Watano Y, Kano K, Ito M, Kurita S (2002) Development of primer sets for PCR amplification of the PgiC gene in ferns. J Plant Res 115:65–70

    CAS  PubMed  Google Scholar 

  18. Iwatsuki K (1992) Ferns and fern allies of Japan. Heibonsha, Tokyo (in Japanese)

    Google Scholar 

  19. Jaruwattanaphan T, Matsumoto S, Watano Y (2013) Reconstructing hybrid speciation events in the Pteris cretica group (Pteridaceae) in Japan and adjacent regions. Syst Bot 38:15–27

    Google Scholar 

  20. Kurata S (1965) On the Japanese ferns belonging to the genus Lepisorus. Sci Rep Yokosuka City Mus 11:20–40

    Google Scholar 

  21. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Sys Bio 50(6):913–925

    CAS  Google Scholar 

  22. Lin YX (2000) Lepisorioideae. In: Lin YX, Lu SG, Zhang XC, Shi L (eds) Flora of China. Science, Beijing, pp 32–115

    Google Scholar 

  23. Mitui K (1971) Correlation between the chromosome numbers and morphological characters in the genus Lepisorus. J Jpn Bot 46:83–96

    Google Scholar 

  24. Mitui K, Nakato N, Masuyama S (1987) Studies on intraspecific polyploids of the fern Lepisorus thunbergianus (2) Cytogeography of main cytotypes. J Jpn Bot 62:311–319

    Google Scholar 

  25. Müller K (2005) SeqState: primer design and sequence statistics for phylogenetic DNA datasets. Appl Bioinform 4:65–69

    Google Scholar 

  26. Nakato N, Masuyama S, Mitui K (1983) Studies on intraspecific polyploids of the fern Lepisorus thunbergianus (1) Their distributional patterns in Kanto districts and the occurrence of new cytotypes. J Jpn Bot 58:195–205

    Google Scholar 

  27. Nitta JH, Ebihara A, Ito M (2011) Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae). Am J Bot 98:1782–1800

    PubMed  Google Scholar 

  28. Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann Bot 90:209–217

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Perrie LR, Shepherd LD, De Lange PJ, Brownsey PJ (2010) Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns. Mol Ecol 19:2916–2932

    CAS  PubMed  Google Scholar 

  30. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    CAS  PubMed  Google Scholar 

  31. Rambaut A, Drummond AJ (2013) Tracer V1.6. http://beast.bio.ed.ac.uk/Tracer/. Accessed Apr 2006

  32. Ronquist F, Teslenko M, Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  33. Rothfels CJ, Larsson A, Li F-W, Sigel EM, Huiet L, Burge DO, Ruhsam M, Graham SW, Stevenson DW, Wong GK-S, Korall P, Pryer KM (2013) Transcriptome-mining for single-copy nuclear markers in ferns. PLoS One 8:1–18

    Google Scholar 

  34. Rothfels CJ, Johnson AK, Windham MD, Pryer KM (2014) Low-copy nuclear data confirm rampant allopolyploidy in the Cystopteridaceae (Polypodiales). Taxon 63:1026–1036

    Google Scholar 

  35. Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050

    Google Scholar 

  36. Schuettpelz E, Grusz AL, Windham MD, Pryer KM (2008) The utility of nuclear GapCp in resolving polyploid fern origins. Syst Bot 33:621–629

    Google Scholar 

  37. Serizawa S (2015) Miscellaneous notes on Japanese pteridophytes (6). Shidekobushi 3:39–59

    Google Scholar 

  38. Serizawa S, Aman A (2012) Two types of Lepisorus thunbergianus (Polypodiaceae) in Japan. Shidekobushi 2:11–22

    Google Scholar 

  39. Sessa EB, Zimmer EA, Givnish TJ (2012) Unraveling reticulate evolution in North American Dryopteris (Dryopteridaceae). BMC Evol Biol 12:104

    PubMed  PubMed Central  Google Scholar 

  40. Shepherd LD, Perrie LR, Brownsey PJ (2008) Low-copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Mol Phylogenet Evol 49:240–248

    CAS  PubMed  Google Scholar 

  41. Shinohara W, Ushio Y, Set A, Nakato N, Kno M, Kudoh H, Tobe H, Murakami N (2010) Evidence for hybrid origin and segmental allopolyploidy in eutetraploid and aneutetraploid Lepisorus thunbergianus (Polypodiaceae). Syst Bot 35:20–29

    Google Scholar 

  42. Sigel EM (2016) Genetic and genomic aspects of hybridization in ferns. J Syst Evol 54:638–655

    Google Scholar 

  43. Sigel EM, Windham MD, Pryer KM (2014) Evidence for reciprocal origins in Polypodium hesperium (Polypodiaceae): a fern model system for investigating how multiple origins shape allopolyploid genomes. Am J Bot 101:1476–1485

    PubMed  Google Scholar 

  44. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    CAS  PubMed  Google Scholar 

  45. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    CAS  PubMed  Google Scholar 

  46. Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then… and now: Stebbins revisited. Am J Bot 101:1057–1078

    PubMed  Google Scholar 

  47. Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571

    CAS  PubMed  Google Scholar 

  48. Symonds VV, Soltis PS, Soltis DE (2010) Dynamics of polyploid formation in Tragopogon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution 64:1984–2003

    PubMed  Google Scholar 

  49. Takamiya M (1996) Index to chromosomes of Japanese Pteridophyta (1910–1996). Japan Pteridological Society, Tokyo

    Google Scholar 

  50. Takei M (1978) On the polyploids of Lepisorus thunbergianus (2) Three cytotaxonomic strains in Oita Pref. J Jpn Bot 53:23–27

    Google Scholar 

  51. Takei M (1982) Karyological and karyosystematical studies on Polypodiaceae in Japan (2). Res Bull Fac Educ Oita Univ 6:9–14

    Google Scholar 

  52. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vogel JC, Russell SJ, Rumsey FJ et al (1998) Evidence for maternal transmission of chloroplast DNA in the genus Asplenium (Aspleniaceae, Pteridophyta). Bot Acta 111:247–249

    CAS  Google Scholar 

  54. Wang L, Qi XP, Xiang QP, Heinrichs J, Schneider H, Zhang XC (2010) Phylogeny of the paleotropical fern genus Lepisorus (Polypodiaceae, Polypodiopsida) inferred from four chloroplast DNA regions. Mol Phylogenet Evol 54:211–225

    CAS  PubMed  Google Scholar 

  55. Wang L, Schneider H, Wu Z, He L, Zhang X, Xiang Q (2012) Indehiscent sporangia enable the accumulation of local fern diversity at the Qinghai-Tibetan Plateau. BMC Evol Biol 12:158

    PubMed  PubMed Central  Google Scholar 

  56. Werth CR, Guttman SI, Eshbaugh WH (1985) Recurring origins of allopolyploid species in Asplenium. Science 228:731–733

    CAS  PubMed  Google Scholar 

  57. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879

    CAS  PubMed  Google Scholar 

  58. Zink MJ (1993) Systematics of the fern genus Lepisorus (J. Smith) Ching (Polypodiaceae–Lepisoreae). Dissertation, University Zurich

  59. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, The University of Texas at Austin

Download references

Acknowledgements

We thank A. Ebihara (National Museum of Nature and Science, Tokyo) for permitting us to inspect herbarium specimens in TNS, N. Nakato for his assistance with chromosome counting, and A. Matsuura and his laboratory members (Chiba University) for their support in flow cytometry analysis. We also acknowledge T. Suzuki (Nature and Human Activities Hyogo, Japan) and T. Oka (Nippon Fernist Club) for their help in obtaining the materials. The authors thank two anonymous reviewers and the Associate Editor, whose comments greatly improved the manuscript. This study was partly supported by a Grant-in-Aid for JSPS Fellows Grant number 15J03437 awarded to TF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Fujiwara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 168 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, T., Serizawa, S. & Watano, Y. Phylogenetic analysis reveals the origins of tetraploid and hexaploid species in the Japanese Lepisorus thunbergianus (Polypodiaceae) complex. J Plant Res 131, 945–959 (2018). https://doi.org/10.1007/s10265-018-1061-6

Download citation

Keywords

  • Allopolyploidy
  • Fern
  • Hybrid origin
  • Lepisorus
  • Species Complex
  • Taxonomy