Airy Shaw HK (1948) Thymelaeaceae–Gonystyloideae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 4. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 349–365
Google Scholar
Akhmetiev MA (2017) Leaf morphology of Rosaceae in extant and fossil Cenozoic floras of Eurasia. In: Sokoloff DD (ed) Taxonomy and evolutionary morphology of plants: materials of the Conference dedicated to 85 anniversary of V.N. Tikhomirov. MaksPress, Moscow, pp 90–93
Aleksandrova GN, Zaporozhets NI (2008a) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 1. Stratigr Geol Correl 16:295–316
Google Scholar
Aleksandrova GN, Zaporozhets NI (2008b) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 2. Stratigr Geol Correl 16:528–539
Google Scholar
Alekseev VI (2013) The beetles (Insecta: Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity. Zool Ecol 3:5–12
Google Scholar
Baranelli JL, Cocucci AA, Anton AM (1995) Reproductive biology in Acacia caven (Mol.) Mol. (Leguminosae) in the central region of Argentina. Bot J Linn Soc 119:65–76
Google Scholar
Basinger JF (1976) Paleorosa similkameenensis, gen. et sp. nov., permineralized flowers (Rosaceae) from the Eocene of British Columbia. Can J Bot 54:2293–2305
Google Scholar
Belsham SR, Orlovich DA (2002) Development of the hypanthium and androecium in New Zealand Myrtoideae (Myrtaceae). New Zeal J Bot 40:687–695
Google Scholar
Belsham SR, Orlovich DA (2003a) Development of the hypanthium and androecium in South American Myrtoideae (Myrtaceae). New Zeal J Bot 41:161–169
Google Scholar
Belsham SR, Orlovich DA (2003b) Development of the hypanthium and androecium in Acmena smithii and Syzygium australe (Acmena alliance, Myrtaceae). Austral Syst Bot 16:621–628
Google Scholar
Benedict JC, DeVore ML, Pigg KB (2011) Prunus and Oemleria (Rosaceae) flowers from the late early Eocene Republic flora of northeastern Washington State, USA. Int J Plant Sci 172:948–958
Google Scholar
Bortiri E, Heuvel BV, Potter D (2006) Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy. Plant Syst Evol 259:53–71
Google Scholar
Carrucan AE, Drinnan AN (2000) The ontogenetic basis for floral diversity in the Baeckea Sub-Group (Myrtaceae). Kew Bull 55:593–613
Google Scholar
Cevallos-Ferriz SRS (1989) Rosaceous wood and fruits from the Middle Eocene Princeton chert (Allenby Fm.) of British Columbia, Canada. Am J Bot 76(Suppl):160
Google Scholar
Cevallos-Ferriz SRS, Stockey RA (1990) Vegetative remains of the Rosaceae from the Princeton chert (Middle Eocene) of British Columbia. IAWA J 11:261–280
Google Scholar
Cevallos-Ferriz SRS, Stockey RA (1991) Fruits and seeds from the Princeton chert (Middle Eocene) of British Columbia: Rosaceae (Prunoideae). Bot Gaz 152:369–379
Google Scholar
Cevallos-Ferriz SRS, Erwin DM, Stockey RA (1993) Further observations on Paleorosa similkameenensis (Rosaceae) from the Middle Eocene Princeton chert of British Columbia, Canada. Rev Palaeobot Palynol 78:277–291
Google Scholar
Chen J, Turland NJ (2007) Combretaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 13. Science Press and Missouri Botanical Garden, Beijing, pp 309–320
Google Scholar
Chin S-W, Wen J, Johnson G, Potter D (2010) Merging Maddenia with the morphologically diverse Prunus (Rosaceae). Bot J Linn Soc 164:236–245
Google Scholar
Chin S-W, Shaw J, Haberle R, Wen J, Potter D (2014) Diversification of almonds, peaches, plums and cherries—molecular systematics and biogeographic history of Prunus (Rosaceae). Mol Phylogenet Evol 76:34–48
PubMed
Google Scholar
Conwentz H (1886) Die Angiospermen des Bernsteins. In: Göppert HR, Menge A (eds) Die Flora des Bernsteins und ihre Beziehungen zur Flora der Tertiärformation und der Gegenwart, Bd 2. Engelmann, Danzig, pp 1–140
Google Scholar
Cowan RS (1998) Mimosaceae (excl. Acacia). In: McCarthy PM (ed) Flora of Australia, vol 12. Frankland Pty Ltd, Melbourne, pp 1–50
Google Scholar
Crepet WL, Nixon KC (1996) The fossil history of stamens. In: D’Arcy WG, Keating RC (eds) The anther: form, function and phylogeny. Cambridge University Press, Cambridge, pp 25–57
Google Scholar
Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91:1666–1682
PubMed
Google Scholar
Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York
Google Scholar
DeVore ML, Pigg KB (2007) A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Syst Evol 266:45–57
Google Scholar
DeVore ML, Pigg KB (2010) Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bull Geosci 85:111–134
CAS
Google Scholar
DeVore ML, Pigg KB (2012) New studies of fossil Rosaceae from the upland early-middle Eocene Okanogan Highlands floras of British Columbia, Canada and Republic, Washington, USA. In: Abstracts of the 13th International Palynological Congress and 9th International Organization of Palaeobotany Conference. Chuo University, Tokyo, p 45
Dlussky GM, Rasnitsyn AP (2009) Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of Central and Eastern Europe. Paleontol J 43:1024–1042
Google Scholar
Drinnan A, Carrucan A (2005) The ontogenetic basis for floral diversity in Agonis, Leptospermum and Kunzea (Myrtaceae). Plant Syst Evol 251:71–88
Google Scholar
Eichler AW (1867) Combretaceae. In: Martius KFP, Eichler AW (eds) Flora Brasiliensis, vol 14. pt 2. Oldenbourg, Monachii et Lipsiae, pp 11–127
Google Scholar
Eichler AW (1875) Blüthendiagramme. Engelmann, Leipzig
Erdei B, Utescher T, Hably L, Tamás J, Roth-Nebelsick A, Grein M (2012) Early Oligocene continental climate of the Palaeogene Basin (Hungary and Slovenia) and the surrounding area. Turkish J Earth Sci 21:153–186
CAS
Google Scholar
Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484
CAS
PubMed
Google Scholar
Evans RC, Dickinson TA (1996) North American black-fruited hawthorns. II. Floral development of 10- and 20-stamen morphotypes in Crataegus section Douglasii (Rosaceae: Maloideae). Am J Bot 83:961–978
Google Scholar
Evans RC, Dickinson TA (1999a) Floral ontogeny and morphology in subfamily Amygdaloideae T. & G. (Rosaceae). Int J Plant Sci 160:955–979
CAS
PubMed
Google Scholar
Evans RC, Dickinson TA (1999b) Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int J Plant Sci 160:981–1012
CAS
PubMed
Google Scholar
Evans RC, Dickinson TA (2005) Floral ontogeny and morphology in Gillenia (“Spiraeoideae”) and subfamily Maloideae C. Weber (Rosaceae). Int J Plant Sci 166:427–447
Google Scholar
Exell AW (1948) Combretaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 4. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 533–589
Google Scholar
Fedotova ZA, Perkovsky EE (2009) New gall midges of the tribe Leptosynini (Diptera, Cecidomyiidae) from the Late Eocene ambers and the classification of the supertribe Heteropezidi. Paleontol J 43:1101–1179
Google Scholar
Fedotova ZA, Perkovsky EE (2015) New gall midges (Diptera, Cecidomyiidae, Stomatosematidi, Brachineuridi) from the Late Eocene Amber of Gulyanka (Zhitomir Region, Ukraine). Paleontol J 49:270–278
Google Scholar
Fedotova ZA, Perkovsky EE (2017) New genus and species of gall midges (Diptera, Cecidomyiidae, Porricondylinae, Holoneurini) from the Late Eocene Amber of Olevsk (Zhitomir Region, Ukraine). Vestn Zool 51:23–30
Google Scholar
Focke WO (1888) Rosaceae. In: Engler A Prantl K Die natürlichen Pflanzenfamilien, vol 3. part 3. Engelmann, Leipzig, pp 1–61
Google Scholar
Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, Grimm GW, Stampanoni M (2007) Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450:549–552
CAS
PubMed
Google Scholar
Friis EM, Pedersen KR, von Balthazar M, Grimm GW, Crane PR (2009) Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170:1086–1101
Google Scholar
Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge
Google Scholar
Friis EM, Marone F, Pedersen RR, Crane PR, Stampanoni M (2014) Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): new insights into Cretaceous plant diversity. J Paleontol 88:684–701
Google Scholar
Gómez-Acevedo SL, Magallón S, Rico-Arce L (2007) Floral development in three species of Acacia (Leguminosae, Mimosoideae). Austral J Bot 55:30–41
Google Scholar
Graham SA (2007) Lythraceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Flowering plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Heidelberg, pp 226–246
Google Scholar
Guenard B, Perrichot V, Economo EP (2015) Integration of global fossil and modern biodiversity data reveals dynamism and stasis in ant macroecological patterns. J Biogeogr 42:2302–2312
Google Scholar
Hewson HJ, Beesley PL (1990) Lythraceae. In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 91–113
Google Scholar
Ho PH (1992) Thymelaeaceae. In: Morat P (ed) Flore du Cambodge, du Laos et du Vietnam, vol 26. Muséum national d’histoire naturelle, Paris, pp 38–81
Google Scholar
Hooker JD, Thomson T (1854) On Maddenia and Diaplarche, new genera of Himalayan plants. Hook J Bot 6:380–384
Google Scholar
Hou D (1960) Thymelaeaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 6. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 1–48
Google Scholar
Hou D, Larsen K, Larsen SS (1996) Caesalpiniaceae (Leguminosae-Caesalpinioideae). In: Kalkman C et al (eds) Flora Malesiana, ser 1, vol 12. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 409–730
Google Scholar
Hyde MA, Wursten BT, Ballings P, Coates Palgrave M (2017) Flora of Zimbabwe: Cultivated species information—individual images: Prunus africana
Ignatov MS, Perkovsky EE (2011) Mosses from Rovno amber (Ukraine). Arctoa 20:1–18
Google Scholar
Ignatov MS, Perkovsky EE (2013) Mosses from Rovno amber (Ukraine), 2. Arctoa 22:83–92
Google Scholar
Ignatov MS, Schäfer-Verwimp A, Perkovsky EE, Heinrichs J (2016) Mosses from Rovno amber (Ukraine), 3. Pottiodicranum, a new moss genus from the Late Eocene. Arctoa 25:229–235
Google Scholar
Ivanov VD, Melnitsky SI, Perkovsky EE (2016) Caddisflies from Cenozoic resins of Europe. Paleontol J 50:485–493
Google Scholar
Jałoszyński P, Perkovsky E (2016) Diversity of Scydmaeninae (Coleoptera: Staphylinidae) in Upper Eocene Rovno amber. Zootaxa 4157:1–85
PubMed
Google Scholar
Kalkman C (1965) The Old World species of Prunus subg. Laurocerasus including those formerly referred to Pygeum Blumea 13:1–115
Google Scholar
Kalkman C (1993) Rosaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol11. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 227–351
Google Scholar
Kalkman C (2004) Rosaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 6. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer, Heidelberg, pp 343–386
Google Scholar
Koehne K (1915) Zur Kenntnis von Prunus Grex Calycopadus und Grex Gymnopadus Sect. Laurocerasus. Bot Jahrb 52:279–233
Google Scholar
Konstantinova NA, Ignatov MS, Perkovsky EE (2012) Hepatics from Rovno amber (Ukraine). Arctoa 21:265–271
Google Scholar
Kozub D, Khmelik V, Shapoval Y, Chentsov V, Yatsenko S, Litovchenko B, Starykh V (2008) Helicon Focus Software. http://www.heliconsoft.com
Larsen K, Larsen SS, Vidal JE (1980) Légumineuses – Césalpinioïdées. In: Aubréville A, Leroy J-F (eds) Flore du Cambodge, du Laos et du Vietnam, vol 18. Muséum national d’histoire naturelle, Paris, pp 1–227
Google Scholar
Larsson SG (1978) Baltic amber - a palaeobiological study. Entomonograph 1:1–192
Google Scholar
Lecompte O (1969) Combretaceae. In: Aubréville A (ed) Flore du Cambodge, du Laos et du Vietnam, vol 10. Muséum national d’histoire naturelle, Paris, pp 1–119
Google Scholar
Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of ribosomal DNA. Am J Bot 88:150–160
CAS
PubMed
Google Scholar
Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the World. Royal Botanic Gardens, Kew
Google Scholar
Li Y, Smith T, Liu CJ, Awasthi N, Yang J, Wang YF, Li CS (2011) Endocarps of Prunus (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province, China. Taxon 60:555–564
Google Scholar
Lindenhofer A, Weber A (1999) The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot Jahrb 121:583–605
Google Scholar
Lindenhofer A, Weber A (2000) Diversification of the androecium within Rosaceae. Linz Biol Beitr 32:670–671
Google Scholar
Liu XL, Wen J, Nie ZL, Johnson G, Liang ZS, Chang ZY (2013) Polyphyly of the Padus group of Prunus (Rosaceae) and the evolution of biogeographic disjunctions between eastern Asia and eastern North America. J Plant Res 126:351–361
PubMed
Google Scholar
Lowry PP, Plunkett GM, Frodin DG (2013) Revision of Plerandra (Araliaceae). I. A synopsis of the genus with an expanded circumscription and a new infrageneric classification. Brittonia 65:42–61
Google Scholar
LPWG (The Legume Phylogeny Working Group) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77
Google Scholar
Lu LD, Gu CZ, Li CL, Alexander C, Bartholomew B, Brach AR, Boufford DE, Ikeda H, Ohba H, Robertson KR, Spongberg SA (2003) Rosaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 9. Science Press and Missouri Botanical Garden, Beijing, pp 46–434
Google Scholar
Mai DH (1984) Karpologische Untersuchungen der Steinkerne fossiler und rezenter Amygdalaceae (Rosales). Feddes Repert 95:299–322
Google Scholar
Mamontov YS, Heinrichs J, Schäfer-Verwimp A, Ignatov MS, Perkovsky EE (2013) Hepatics from Rovno amber (Ukraine), 2. Acrolejeunea ucrainica sp. nov. Arctoa 22:93–96
Google Scholar
Mamontov YS, Heinrichs J, Schäfer-Verwimp A, Ignatov MS, Perkovsky EE (2015a) Hepatics from Rovno amber (Ukraine), 4. Frullania riclefgrollei, sp. nov. Rev Palaeobot Palynol 223:31–36
Google Scholar
Mamontov YS, Heinrichs J, Váňa J, Ignatov MS, Perkovsky EE (2015b) Hepatics from Rovno amber (Ukraine), 3. Anastrophyllum rovnoi sp. nov. Arctoa 24:43–46
Google Scholar
Mamontov YS, Heinrichs J, Váňa J, Ignatov MS, Perkovsky EE (2015c) Hepatics from Rovno amber (Ukraine), 5. Cephaloziella nadezhdae sp. nov. Arctoa 24:289–293
Google Scholar
Mamontov YS, Hentschel J, Konstantinova NA, Perkovsky EE, Ignatov MS (2017a) Hepatics from Rovno amber (Ukraine), 6. Frullania rovnoi, sp. nov. J Bryol 39:336–341
Google Scholar
Mamontov YS, Ignatov MS, Perkovsky EE (2017b) Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov. Nova Hedwigia 106:103–113
Google Scholar
Manchester SR (1994) Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, North Central Oregon. Palaeontogr Amer 58:1–205
Google Scholar
Mänd K, Muehlenbachs K, McKellar RC, Wolfe AP, Konhauser K (2018) Distinct origins for Rovno and Baltic ambers: evidence from carbon and hydrogen stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 505:265–283
Google Scholar
Mason SC (1913) The pubescent-fruited species of Prunus of the Southwestern States. J Agric Res 1:147–178
Google Scholar
Meijering E (2015) FeatureJ: an ImageJ Plugin Suite for image feature extraction. Ver. 2.0.0. http://imagescience.org/meijering/software/featurej/
Mendes EJ (1978) Prunus africana. In: Timberlake JR, Martins ES (eds) Flora Zambesiaca. Royal Botanic Gardens, Kew, p 7
Google Scholar
Menge A (1858) Beitrag zur Bernsteinflora. Neueste Schriften der Naturforschenden Gesellschaft zu Danzig 6:1–18
Google Scholar
Moreau JD, Néraudeau D, Perrichot V, Tafforeau P (2017) 100-million-year-old conifer tissues from the mid-Cretaceous amber of Charente (western France) revealed by synchrotron microtomography. Ann Bot 119:117–128
CAS
PubMed
Google Scholar
Nadein KS, Perkovskу EE, Moseyko AG (2016) New Late Eocene Chrysomelidae (Insecta: Coleoptera) from Baltic, Rovno and Danish ambers. Papers Palaeontol 2:117–137
Google Scholar
Nielsen I (1981) Légumineuses – Mimosoïdées. In: Aubréville A, Leroy J-F (eds) Flore du Cambodge, du Laos et du Vietnam, vol 19. Muséum national d’histoire naturelle, Paris, pp 1–159
Google Scholar
Nielsen I (1992) Mimosaceae (Leguminosae–Mimosoideae). In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 11. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 1–226
Google Scholar
Nuraliev MS, Oskolski AA, Sokoloff DD, Remizowa MV (2010) Flowers of Araliaceae: structural diversity, developmental and evolutionary aspects. Plant Div Evol 128:247–268
Google Scholar
Orlovich DA, Drinnan AN, Ladiges PY (2003) Floral development in Melaleuca and Callistemon (Myrtaceae). Austral Syst Bot 11:689–710
Google Scholar
Pedley L (1990) Combretaceae. In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 255–293
Google Scholar
Penney D (2016a) Sub/fossil resin research in the 21st Century: trends and perspectives. Paläont Zeitschr 90:425–447
Google Scholar
Penney D (2016b) Amber palaeobiology: Research trends and perspectives for the 21st century. Siri Scientific Press, Manchester
Google Scholar
Perkovsky EE (2011) Syninclusions of the Eocene winter ant Prenolepis henshei (Hymenoptera: Formicidae) and Germaraphis aphids (Hemiptera: Eriosomatidae) in Late Eocene Baltic and Rovno amber: some implications. Russ Entomol J 20:303–313
Google Scholar
Perkovsky EE (2013) Eohelea sinuosa (Meunier, 1904) (Diptera, Ceratopogonidae) in Late Eocene Ambers of Europe. Paleontol J 47:503–512
Google Scholar
Perkovsky EE (2016) Tropical and Holarctic ants in Late Eocene ambers. Vestn Zool 50:111–122
Google Scholar
Perkovsky EE, Rasnitsyn AP (2013) First records of Scolebythidae and Chrysididae (Hymenoptera, Chrysidoidea) in Rovno amber. Vestn Zool 47:14–19
Google Scholar
Perkovsky EE, Wegierek P (2018) Aphid-Buchnera-Ant symbiosis, or why are aphids rare in the tropics and very rare further south? Earth Environ Sci Trans R Soc Edinb 107:297–310
Google Scholar
Perkovsky EE, Zosimovich VY, Vlaskin AP (2003) Rovno amber insects: first results of analysis. Russ Entomol J 12:119–126
Google Scholar
Perkovsky EE, Rasnitsyn AP, Vlaskin AP, Taraschuk MV (2007) A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. Afr Invertebr 48:229–245
Google Scholar
Perkovsky EE, Zosimovich VY, Vlaskin AP (2010) Rovno Amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 116–136
Google Scholar
Perkovsky EE (2017) Comparison of biting midges of the Early Eocene Cambay amber (India) and Late Eocene European Ambers supports the independent origin of European ambers. Vestn Zool 51:275–284
Google Scholar
Pielińska A (1990) The list of plant inclusions in Baltic amber from collections of the Museum of the Earth in Warsaw. Pr Muz Ziemi 41:147–148
Google Scholar
Pigg KB, DeVore ML (2016) A review of the plants of the Princeton chert (Eocene, British Columbia, Canada). Botany 94:661–681
Google Scholar
Pimenova NV (1937) The flora of the Tertiary sandstones of the western bank-region of the Dnieper in the Ukr.S.S.R. Trans Inst Geol Acad Sci Ukrainian SSR 12:1–135 (in Ukrainian)
Google Scholar
Pojarkova A (1939) Aruncus. In: Komarov VL (ed) Flora of USSR, 9. Nauka, Moscow, pp 309–312
Google Scholar
Popov SV, Akhmetiev MA, Bugrova EM, Lopatin AV, Amitrov OV, Andreyeva-Grigorovich AS, Zherikhin VV, Zaporozhets NI, Nikolaeva IA, Krasheninnikov VA, Kuzmicheva EI, Sychevskaja EK, Shcherba IG (2001) Biogeography of the northern Peri-Tethys from the Late Eocene to the Early Miocene. Part 1. Late Eocene. Paleontol J 35(Suppl. 1):1–68
Google Scholar
Potter D, Eriksson T, Evans RC, Oh SH, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43
Google Scholar
Prigge BA (2002) A new species of Prunus (Rosaceae) from the Mojave desert of California. Madroño 49:285–288
Google Scholar
Primack RB, Lloyd DG (1980) Andromonoecy in the New Zealand montane shrub manuka, Leptospermum scoparium (Myrtaceae). Am J Bot 67:361–368
Google Scholar
Qin H, Graham S, Gilbert MG (2007) Lythraceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 13. Science Press and Missouri Botanical Garden, Beijing, pp 274–289
Google Scholar
Rappsilber I (2016) Fauna und Flora des Bitterfelder Bernsteinwaldes—Eine Auflistung der bis 2014 publizierten Organismentaxa aus dem Bitterfelder Bernstein. Ampyx, Halle
Google Scholar
Rasband WS (2014) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/
Roemer MJ (1847) Familiarum naturalium regni vegetabilis synopses monographicae, fasc 3, Rosiflorae. Landes-Industrie-Comptoir, Vimariae
Google Scholar
Roher JR (2015) Prunus. In: Flora of North America Editorial Committee (eds) Flora of North America, 9. Published online at http://www.efloras.org
Ronse De Craene LP (1992) The androecium of the Magnoliophytina: characterisation and systematic importance. Dissertation, KU Leuven
Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164(5 Suppl.):S225–S235
Google Scholar
Ronse De Craene LP (2010) Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge
Google Scholar
Ronse De Craene LP, Smets E (1991) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269
Google Scholar
Ronse De Craene LP, Smets EF (1996) The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Repert 107:1–17
Google Scholar
Ross JH (1998) Caesalpiniaceae. In: McCarthy PM (ed) Flora of Australia, vol 12. Frankland Pty Ltd, Melbourne, pp 50–178
Google Scholar
Rye BL (1990) Thymelaeaceae (excluding Kelleria). In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 122–215
Google Scholar
Sadowski E-M (2017) Towards a new picture of the ‘Baltic amber forest’—flora, habitat types, and palaeoecology. Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium”. Georg-August-Universität, Göttingen
Schönenberger J, von Balthazar M, Takahashi M, Xiao X, Crane PR, Herendeen PS (2012) Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Ann Bot 109:921–936
PubMed
PubMed Central
Google Scholar
Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and Classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55:1069–1079
CAS
PubMed
Google Scholar
Simutnik SA, Perkovsky EE (2018) Archaeocercus gen. nov. (Hymenoptera, Chalcidoidea, Encyrtidae) from Late Eocene Rovno Amber. Zootaxa 4441:543–548
CAS
PubMed
Google Scholar
Smith SY, Collinson ME, Rudall PJ, Simpson DA, Marone F, Stampanoni M (2009) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proc Natl Acad Sci (USA) 106:12013–12018
CAS
Google Scholar
Spahr U (1993) Systematischer Katalog und Bibliographie der Bernstein-und Kopal-Flora. Stuttg Beitr Naturk. ser B, Geol Palaontol 195:1–99
Google Scholar
Stace CA (2007) Combretaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Flowering plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Heidelberg, pp 67–82
Google Scholar
Sutton MD, Rahman IA, Garwood RJ (2014) Techniques for virtual palaeontology. Wiley Blackwell, Oxford
Google Scholar
Tolkanitz VI, Perkovsky EE (2018) First record of the Late Eocene ichneumon fly Rasnitsynites tarsalis Kasparyan (Ichneumonidae, Townesitinae) in Ukraine confirms correlation of the Upper Eocene Lagerstätten. Paleontol J 52:31–34
Google Scholar
Tucker SC (2003) Floral development in legumes. Plant Physiol 131:911–926
CAS
PubMed
PubMed Central
Google Scholar
Uhl D (2015) Preliminary note on fossil flowers and inflorescences from the late Oligocene of Enspel (Westerwald, W-Germany). Palaeobiodivers Palaeoenviron 95:47–53
Google Scholar
Vasconcelos TNC, Lucas EJ, Faria JEQ, Prenner G (2018) Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). Ann Bot 121:161–174
PubMed
Google Scholar
Vidal JE (1968) Rosaceae 1 (excl. Rubus). In: Aubréville A (ed) Flore du Cambodge, du Laos et du Vietnam, vol 6. Muséum national d’histoire naturelle, Paris, pp 1–210
Google Scholar
Vidal JE (1970) Rosaceae. In: Smitinand T, Larsen K (eds), Flora of Thailand, 2(1). ASRCT Press, Bangkok, pp 31–74
Wang Y, Gilbert MG, Mathew B, Brickell CD, Nevling LI (2007) Thymelaeaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 13. Science Press and Missouri Botanical Garden, Beijing, pp 213–250
Google Scholar
Watson L, Dallwitz MJ (1992) (onwards) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 19th October 2016. delta-intkey.com
Weitschat W, Wichard W (2002) Atlas of plants and animals in Baltic amber. Friedrich Pfeil, München
Google Scholar
Weitschat W, Wichard W (2010) Baltic amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Science Press, Manchester, pp 80–115
Google Scholar
Wen J, Shi W (2012) Revision of the Maddenia clade of Prunus (Rosaceae). PhytoKeys 11:39–59
Google Scholar
Wen J, Berggren ST, Lee CH, Ickert-Bond S, Yi TS, Yoo KO, Xie L, Shaw J, Potter D (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and ribosomal ITS sequences. J Syst Evol 46:322–332
Google Scholar
Wheeler EA, Landon J (1992) Late Eocene (Chadronian) dicotyledonous woods from Nebraska: evolutionary and ecological significance. Rev Palaeobot Palynol 74:267–282
Google Scholar
Wheeler EA, Richard RA, Barghoorn ES (1978) Fossil dicotyledonous woods from Yellowstone National Park II. J Arnold Arbor 59:1–31
Google Scholar
Wilson PG (2011) Myrtaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, pp 212–271
Google Scholar
Wolfe LM, Drapalik DJ (1999) Variation in the degree of andromonoecy in Prunus caroliniana. Castanea 64:259–262
Google Scholar
Wolfe JA, Wehr W (1988) Rosaceous Chamaebatiaria-like foliage from the Paleogene of western North America. Aliso 12:177–200
Google Scholar
Xu L, Chen D, Zhu X, Huang P, Wei Z, Sa R, Zhang D, Bao B, Wu D, Sun H, Gao X, Liu Y, Chang Z, Li J, Zhang M, Podlech D, Ohashi H, Larsen K, Welsh SL, Vincent MA, Gilbert MG, Pedley L, Schrire BD, Yakovlev GP, Thulin M, Nielsen IC, Choi B-H, Turland NJ, Polhill RM, Larsen SS, Hou D, Iokawa Y, Wilmot-Dear CM, Kenicer G, Nemoto T, Lock JM, Delgado Salinas A, Kramina TE, Brach AR, Bartholomew B, Sokoloff DD (2010) Fabaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 10. Science Press and Missouri Botanical Garden, Beijing, pp 1–577
Google Scholar
Yakovlev GP (1991) Legumes of the world [Bobovye zemnogo shara]. Nauka, Leningrad
Google Scholar
Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS (2017) Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol 214:1355–1367
CAS
PubMed
Google Scholar
Zhao L, Jiang X-W, Zuo Y-J, Liu X-L, Chin S-W, Haberle R, Potter D, Chang Z-Y, Wen J (2016) Multiple events of allopolyploidy in the evolution of the racemose lineages in Prunus (Rosaceae) based on integrated evidence from nuclear and plastid data. PLoS ONE 11:e0157123
PubMed
PubMed Central
Google Scholar
Zimmerman E, Prenner G, Bruneau A (2013) Floral morphology of Apuleia leiocarpa (Dialiinae: Leguminosae), an unusual andromonoecious legume. Int J Plant Sci 174:154–160
Google Scholar