Advertisement

Journal of Plant Research

, Volume 131, Issue 6, pp 925–943 | Cite as

Staminate flower of Prunus s. l. (Rosaceae) from Eocene Rovno amber (Ukraine)

  • Dmitry D. SokoloffEmail author
  • Michael S. Ignatov
  • Margarita V. Remizowa
  • Maxim S. Nuraliev
  • Vladimir Blagoderov
  • Amin Garbout
  • Evgeny E. Perkovsky
Regular Paper

Abstract

The late Eocene ambers provide plethora of animal and plant fossils including well-preserved angiosperm flowers from the Baltic amber. The Rovno amber from NW Ukraine resembles in many aspects the Baltic amber; however, only fossilized animals and some bryophytes have yet been studied from the Rovno amber. We provide the first detailed description of an angiosperm flower from Rovno amber. The flower is staminate with conspicuous hypanthium, double pentamerous perianth and whorled androecium of 24 stamens much longer than the petals. Sepals are sparsely pubescent and petals are densely hirsute outside. The fossil shares important features with extant members of Prunus subgen. Padus s. l. (incl. Laurocerasus, Pygeum and Maddenia), especially with its evergreen paleotropical species. It is described here as a new species Prunus hirsutipetala D.D.Sokoloff, Remizowa et Nuraliev. Our study provides the first convincing record of fossil flowers of Rosaceae from Eocene of Europe and the earliest fossil flower of Prunus outside North America. Our record of a plant resembling extant tropical species supports palaeoentomological evidences for warm winters in northwestern Ukraine during the late Eocene, as well as suggesting a more significant role of tropical insects in Rovno amber than inferred from Baltic amber.

Keywords

Amber Eocene Europe Flower Fossil Prunus hirsutipetala Rosaceae 

Notes

Acknowledgements

We are grateful to Anatoly P. Vlaskin for cutting and polishing the sample of amber, to Zoya V. Akulova-Barlow, Richard M. Bateman, Natalia P. Maslova, Alexei A. Oskolski and Alexandr P. Rasnitsyn for discussion, to Ekaterina A. Sidorchuk, Kirill Yu. Eskov and Igor V. Shamshev for determination of syninclusions, to Lene Lauritsen and Mark Hyde for kind permission to reproduce the image of P. africana originally published by Hyde et al. (2017), to Dinesh Valke for kind permission to reproduce the image of P. ceylanica originally published at https://www.flickr.com/photos/dinesh_valke/21875999921 and to Zoya V. Akulova-Barlow for providing an unpublished photograph of P. ilicifolia and kind permission to publish it in the present paper. Morphological description and comparisons with extant taxa were carried out in accordance to Government order for the Lomonosov Moscow State University (projects No. AAAA-A16-116021660045-2, АААА-А16-116021660105-3).

References

  1. Airy Shaw HK (1948) Thymelaeaceae–Gonystyloideae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 4. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 349–365Google Scholar
  2. Akhmetiev MA (2017) Leaf morphology of Rosaceae in extant and fossil Cenozoic floras of Eurasia. In: Sokoloff DD (ed) Taxonomy and evolutionary morphology of plants: materials of the Conference dedicated to 85 anniversary of V.N. Tikhomirov. MaksPress, Moscow, pp 90–93Google Scholar
  3. Aleksandrova GN, Zaporozhets NI (2008a) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 1. Stratigr Geol Correl 16:295–316Google Scholar
  4. Aleksandrova GN, Zaporozhets NI (2008b) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 2. Stratigr Geol Correl 16:528–539Google Scholar
  5. Alekseev VI (2013) The beetles (Insecta: Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity. Zool Ecol 3:5–12Google Scholar
  6. Baranelli JL, Cocucci AA, Anton AM (1995) Reproductive biology in Acacia caven (Mol.) Mol. (Leguminosae) in the central region of Argentina. Bot J Linn Soc 119:65–76Google Scholar
  7. Basinger JF (1976) Paleorosa similkameenensis, gen. et sp. nov., permineralized flowers (Rosaceae) from the Eocene of British Columbia. Can J Bot 54:2293–2305Google Scholar
  8. Belsham SR, Orlovich DA (2002) Development of the hypanthium and androecium in New Zealand Myrtoideae (Myrtaceae). New Zeal J Bot 40:687–695Google Scholar
  9. Belsham SR, Orlovich DA (2003a) Development of the hypanthium and androecium in South American Myrtoideae (Myrtaceae). New Zeal J Bot 41:161–169Google Scholar
  10. Belsham SR, Orlovich DA (2003b) Development of the hypanthium and androecium in Acmena smithii and Syzygium australe (Acmena alliance, Myrtaceae). Austral Syst Bot 16:621–628Google Scholar
  11. Benedict JC, DeVore ML, Pigg KB (2011) Prunus and Oemleria (Rosaceae) flowers from the late early Eocene Republic flora of northeastern Washington State, USA. Int J Plant Sci 172:948–958Google Scholar
  12. Bortiri E, Heuvel BV, Potter D (2006) Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy. Plant Syst Evol 259:53–71Google Scholar
  13. Carrucan AE, Drinnan AN (2000) The ontogenetic basis for floral diversity in the Baeckea Sub-Group (Myrtaceae). Kew Bull 55:593–613Google Scholar
  14. Cevallos-Ferriz SRS (1989) Rosaceous wood and fruits from the Middle Eocene Princeton chert (Allenby Fm.) of British Columbia, Canada. Am J Bot 76(Suppl):160Google Scholar
  15. Cevallos-Ferriz SRS, Stockey RA (1990) Vegetative remains of the Rosaceae from the Princeton chert (Middle Eocene) of British Columbia. IAWA J 11:261–280Google Scholar
  16. Cevallos-Ferriz SRS, Stockey RA (1991) Fruits and seeds from the Princeton chert (Middle Eocene) of British Columbia: Rosaceae (Prunoideae). Bot Gaz 152:369–379Google Scholar
  17. Cevallos-Ferriz SRS, Erwin DM, Stockey RA (1993) Further observations on Paleorosa similkameenensis (Rosaceae) from the Middle Eocene Princeton chert of British Columbia, Canada. Rev Palaeobot Palynol 78:277–291Google Scholar
  18. Chen J, Turland NJ (2007) Combretaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 13. Science Press and Missouri Botanical Garden, Beijing, pp 309–320Google Scholar
  19. Chin S-W, Wen J, Johnson G, Potter D (2010) Merging Maddenia with the morphologically diverse Prunus (Rosaceae). Bot J Linn Soc 164:236–245Google Scholar
  20. Chin S-W, Shaw J, Haberle R, Wen J, Potter D (2014) Diversification of almonds, peaches, plums and cherries—molecular systematics and biogeographic history of Prunus (Rosaceae). Mol Phylogenet Evol 76:34–48PubMedGoogle Scholar
  21. Conwentz H (1886) Die Angiospermen des Bernsteins. In: Göppert HR, Menge A (eds) Die Flora des Bernsteins und ihre Beziehungen zur Flora der Tertiärformation und der Gegenwart, Bd 2. Engelmann, Danzig, pp 1–140Google Scholar
  22. Cowan RS (1998) Mimosaceae (excl. Acacia). In: McCarthy PM (ed) Flora of Australia, vol 12. Frankland Pty Ltd, Melbourne, pp 1–50Google Scholar
  23. Crepet WL, Nixon KC (1996) The fossil history of stamens. In: D’Arcy WG, Keating RC (eds) The anther: form, function and phylogeny. Cambridge University Press, Cambridge, pp 25–57Google Scholar
  24. Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91:1666–1682PubMedGoogle Scholar
  25. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New YorkGoogle Scholar
  26. DeVore ML, Pigg KB (2007) A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Syst Evol 266:45–57Google Scholar
  27. DeVore ML, Pigg KB (2010) Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bull Geosci 85:111–134Google Scholar
  28. DeVore ML, Pigg KB (2012) New studies of fossil Rosaceae from the upland early-middle Eocene Okanogan Highlands floras of British Columbia, Canada and Republic, Washington, USA. In: Abstracts of the 13th International Palynological Congress and 9th International Organization of Palaeobotany Conference. Chuo University, Tokyo, p 45Google Scholar
  29. Dlussky GM, Rasnitsyn AP (2009) Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of Central and Eastern Europe. Paleontol J 43:1024–1042Google Scholar
  30. Drinnan A, Carrucan A (2005) The ontogenetic basis for floral diversity in Agonis, Leptospermum and Kunzea (Myrtaceae). Plant Syst Evol 251:71–88Google Scholar
  31. Eichler AW (1867) Combretaceae. In: Martius KFP, Eichler AW (eds) Flora Brasiliensis, vol 14. pt 2. Oldenbourg, Monachii et Lipsiae, pp 11–127Google Scholar
  32. Eichler AW (1875) Blüthendiagramme. Engelmann, LeipzigGoogle Scholar
  33. Erdei B, Utescher T, Hably L, Tamás J, Roth-Nebelsick A, Grein M (2012) Early Oligocene continental climate of the Palaeogene Basin (Hungary and Slovenia) and the surrounding area. Turkish J Earth Sci 21:153–186Google Scholar
  34. Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484PubMedGoogle Scholar
  35. Evans RC, Dickinson TA (1996) North American black-fruited hawthorns. II. Floral development of 10- and 20-stamen morphotypes in Crataegus section Douglasii (Rosaceae: Maloideae). Am J Bot 83:961–978Google Scholar
  36. Evans RC, Dickinson TA (1999a) Floral ontogeny and morphology in subfamily Amygdaloideae T. & G. (Rosaceae). Int J Plant Sci 160:955–979PubMedGoogle Scholar
  37. Evans RC, Dickinson TA (1999b) Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int J Plant Sci 160:981–1012PubMedGoogle Scholar
  38. Evans RC, Dickinson TA (2005) Floral ontogeny and morphology in Gillenia (“Spiraeoideae”) and subfamily Maloideae C. Weber (Rosaceae). Int J Plant Sci 166:427–447Google Scholar
  39. Exell AW (1948) Combretaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 4. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 533–589Google Scholar
  40. Fedotova ZA, Perkovsky EE (2009) New gall midges of the tribe Leptosynini (Diptera, Cecidomyiidae) from the Late Eocene ambers and the classification of the supertribe Heteropezidi. Paleontol J 43:1101–1179Google Scholar
  41. Fedotova ZA, Perkovsky EE (2015) New gall midges (Diptera, Cecidomyiidae, Stomatosematidi, Brachineuridi) from the Late Eocene Amber of Gulyanka (Zhitomir Region, Ukraine). Paleontol J 49:270–278Google Scholar
  42. Fedotova ZA, Perkovsky EE (2017) New genus and species of gall midges (Diptera, Cecidomyiidae, Porricondylinae, Holoneurini) from the Late Eocene Amber of Olevsk (Zhitomir Region, Ukraine). Vestn Zool 51:23–30Google Scholar
  43. Focke WO (1888) Rosaceae. In: Engler A Prantl K Die natürlichen Pflanzenfamilien, vol 3. part 3. Engelmann, Leipzig, pp 1–61Google Scholar
  44. Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, Grimm GW, Stampanoni M (2007) Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450:549–552PubMedGoogle Scholar
  45. Friis EM, Pedersen KR, von Balthazar M, Grimm GW, Crane PR (2009) Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170:1086–1101Google Scholar
  46. Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, CambridgeGoogle Scholar
  47. Friis EM, Marone F, Pedersen RR, Crane PR, Stampanoni M (2014) Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): new insights into Cretaceous plant diversity. J Paleontol 88:684–701Google Scholar
  48. Gómez-Acevedo SL, Magallón S, Rico-Arce L (2007) Floral development in three species of Acacia (Leguminosae, Mimosoideae). Austral J Bot 55:30–41Google Scholar
  49. Graham SA (2007) Lythraceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Flowering plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Heidelberg, pp 226–246Google Scholar
  50. Guenard B, Perrichot V, Economo EP (2015) Integration of global fossil and modern biodiversity data reveals dynamism and stasis in ant macroecological patterns. J Biogeogr 42:2302–2312Google Scholar
  51. Hewson HJ, Beesley PL (1990) Lythraceae. In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 91–113Google Scholar
  52. Ho PH (1992) Thymelaeaceae. In: Morat P (ed) Flore du Cambodge, du Laos et du Vietnam, vol 26. Muséum national d’histoire naturelle, Paris, pp 38–81Google Scholar
  53. Hooker JD, Thomson T (1854) On Maddenia and Diaplarche, new genera of Himalayan plants. Hook J Bot 6:380–384Google Scholar
  54. Hou D (1960) Thymelaeaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 6. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 1–48Google Scholar
  55. Hou D, Larsen K, Larsen SS (1996) Caesalpiniaceae (Leguminosae-Caesalpinioideae). In: Kalkman C et al (eds) Flora Malesiana, ser 1, vol 12. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 409–730Google Scholar
  56. Hyde MA, Wursten BT, Ballings P, Coates Palgrave M (2017) Flora of Zimbabwe: Cultivated species information—individual images: Prunus africana Google Scholar
  57. Ignatov MS, Perkovsky EE (2011) Mosses from Rovno amber (Ukraine). Arctoa 20:1–18Google Scholar
  58. Ignatov MS, Perkovsky EE (2013) Mosses from Rovno amber (Ukraine), 2. Arctoa 22:83–92Google Scholar
  59. Ignatov MS, Schäfer-Verwimp A, Perkovsky EE, Heinrichs J (2016) Mosses from Rovno amber (Ukraine), 3. Pottiodicranum, a new moss genus from the Late Eocene. Arctoa 25:229–235Google Scholar
  60. Ivanov VD, Melnitsky SI, Perkovsky EE (2016) Caddisflies from Cenozoic resins of Europe. Paleontol J 50:485–493Google Scholar
  61. Jałoszyński P, Perkovsky E (2016) Diversity of Scydmaeninae (Coleoptera: Staphylinidae) in Upper Eocene Rovno amber. Zootaxa 4157:1–85PubMedGoogle Scholar
  62. Kalkman C (1965) The Old World species of Prunus subg. Laurocerasus including those formerly referred to Pygeum Blumea 13:1–115Google Scholar
  63. Kalkman C (1993) Rosaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol11. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 227–351Google Scholar
  64. Kalkman C (2004) Rosaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 6. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer, Heidelberg, pp 343–386Google Scholar
  65. Koehne K (1915) Zur Kenntnis von Prunus Grex Calycopadus und Grex Gymnopadus Sect. Laurocerasus. Bot Jahrb 52:279–233Google Scholar
  66. Konstantinova NA, Ignatov MS, Perkovsky EE (2012) Hepatics from Rovno amber (Ukraine). Arctoa 21:265–271Google Scholar
  67. Kozub D, Khmelik V, Shapoval Y, Chentsov V, Yatsenko S, Litovchenko B, Starykh V (2008) Helicon Focus Software. http://www.heliconsoft.com
  68. Larsen K, Larsen SS, Vidal JE (1980) Légumineuses – Césalpinioïdées. In: Aubréville A, Leroy J-F (eds) Flore du Cambodge, du Laos et du Vietnam, vol 18. Muséum national d’histoire naturelle, Paris, pp 1–227Google Scholar
  69. Larsson SG (1978) Baltic amber - a palaeobiological study. Entomonograph 1:1–192Google Scholar
  70. Lecompte O (1969) Combretaceae. In: Aubréville A (ed) Flore du Cambodge, du Laos et du Vietnam, vol 10. Muséum national d’histoire naturelle, Paris, pp 1–119Google Scholar
  71. Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of ribosomal DNA. Am J Bot 88:150–160PubMedGoogle Scholar
  72. Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the World. Royal Botanic Gardens, KewGoogle Scholar
  73. Li Y, Smith T, Liu CJ, Awasthi N, Yang J, Wang YF, Li CS (2011) Endocarps of Prunus (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province, China. Taxon 60:555–564Google Scholar
  74. Lindenhofer A, Weber A (1999) The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot Jahrb 121:583–605Google Scholar
  75. Lindenhofer A, Weber A (2000) Diversification of the androecium within Rosaceae. Linz Biol Beitr 32:670–671Google Scholar
  76. Liu XL, Wen J, Nie ZL, Johnson G, Liang ZS, Chang ZY (2013) Polyphyly of the Padus group of Prunus (Rosaceae) and the evolution of biogeographic disjunctions between eastern Asia and eastern North America. J Plant Res 126:351–361PubMedGoogle Scholar
  77. Lowry PP, Plunkett GM, Frodin DG (2013) Revision of Plerandra (Araliaceae). I. A synopsis of the genus with an expanded circumscription and a new infrageneric classification. Brittonia 65:42–61Google Scholar
  78. LPWG (The Legume Phylogeny Working Group) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77Google Scholar
  79. Lu LD, Gu CZ, Li CL, Alexander C, Bartholomew B, Brach AR, Boufford DE, Ikeda H, Ohba H, Robertson KR, Spongberg SA (2003) Rosaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 9. Science Press and Missouri Botanical Garden, Beijing, pp 46–434Google Scholar
  80. Mai DH (1984) Karpologische Untersuchungen der Steinkerne fossiler und rezenter Amygdalaceae (Rosales). Feddes Repert 95:299–322Google Scholar
  81. Mamontov YS, Heinrichs J, Schäfer-Verwimp A, Ignatov MS, Perkovsky EE (2013) Hepatics from Rovno amber (Ukraine), 2. Acrolejeunea ucrainica sp. nov. Arctoa 22:93–96Google Scholar
  82. Mamontov YS, Heinrichs J, Schäfer-Verwimp A, Ignatov MS, Perkovsky EE (2015a) Hepatics from Rovno amber (Ukraine), 4. Frullania riclefgrollei, sp. nov. Rev Palaeobot Palynol 223:31–36Google Scholar
  83. Mamontov YS, Heinrichs J, Váňa J, Ignatov MS, Perkovsky EE (2015b) Hepatics from Rovno amber (Ukraine), 3. Anastrophyllum rovnoi sp. nov. Arctoa 24:43–46Google Scholar
  84. Mamontov YS, Heinrichs J, Váňa J, Ignatov MS, Perkovsky EE (2015c) Hepatics from Rovno amber (Ukraine), 5. Cephaloziella nadezhdae sp. nov. Arctoa 24:289–293Google Scholar
  85. Mamontov YS, Hentschel J, Konstantinova NA, Perkovsky EE, Ignatov MS (2017a) Hepatics from Rovno amber (Ukraine), 6. Frullania rovnoi, sp. nov. J Bryol 39:336–341Google Scholar
  86. Mamontov YS, Ignatov MS, Perkovsky EE (2017b) Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov. Nova Hedwigia 106:103–113Google Scholar
  87. Manchester SR (1994) Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, North Central Oregon. Palaeontogr Amer 58:1–205Google Scholar
  88. Mänd K, Muehlenbachs K, McKellar RC, Wolfe AP, Konhauser K (2018) Distinct origins for Rovno and Baltic ambers: evidence from carbon and hydrogen stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 505:265–283Google Scholar
  89. Mason SC (1913) The pubescent-fruited species of Prunus of the Southwestern States. J Agric Res 1:147–178Google Scholar
  90. Meijering E (2015) FeatureJ: an ImageJ Plugin Suite for image feature extraction. Ver. 2.0.0. http://imagescience.org/meijering/software/featurej/
  91. Mendes EJ (1978) Prunus africana. In: Timberlake JR, Martins ES (eds) Flora Zambesiaca. Royal Botanic Gardens, Kew, p 7Google Scholar
  92. Menge A (1858) Beitrag zur Bernsteinflora. Neueste Schriften der Naturforschenden Gesellschaft zu Danzig 6:1–18Google Scholar
  93. Moreau JD, Néraudeau D, Perrichot V, Tafforeau P (2017) 100-million-year-old conifer tissues from the mid-Cretaceous amber of Charente (western France) revealed by synchrotron microtomography. Ann Bot 119:117–128PubMedGoogle Scholar
  94. Nadein KS, Perkovskу EE, Moseyko AG (2016) New Late Eocene Chrysomelidae (Insecta: Coleoptera) from Baltic, Rovno and Danish ambers. Papers Palaeontol 2:117–137Google Scholar
  95. Nielsen I (1981) Légumineuses – Mimosoïdées. In: Aubréville A, Leroy J-F (eds) Flore du Cambodge, du Laos et du Vietnam, vol 19. Muséum national d’histoire naturelle, Paris, pp 1–159Google Scholar
  96. Nielsen I (1992) Mimosaceae (Leguminosae–Mimosoideae). In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 11. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 1–226Google Scholar
  97. Nuraliev MS, Oskolski AA, Sokoloff DD, Remizowa MV (2010) Flowers of Araliaceae: structural diversity, developmental and evolutionary aspects. Plant Div Evol 128:247–268Google Scholar
  98. Orlovich DA, Drinnan AN, Ladiges PY (2003) Floral development in Melaleuca and Callistemon (Myrtaceae). Austral Syst Bot 11:689–710Google Scholar
  99. Pedley L (1990) Combretaceae. In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 255–293Google Scholar
  100. Penney D (2016a) Sub/fossil resin research in the 21st Century: trends and perspectives. Paläont Zeitschr 90:425–447Google Scholar
  101. Penney D (2016b) Amber palaeobiology: Research trends and perspectives for the 21st century. Siri Scientific Press, ManchesterGoogle Scholar
  102. Perkovsky EE (2011) Syninclusions of the Eocene winter ant Prenolepis henshei (Hymenoptera: Formicidae) and Germaraphis aphids (Hemiptera: Eriosomatidae) in Late Eocene Baltic and Rovno amber: some implications. Russ Entomol J 20:303–313Google Scholar
  103. Perkovsky EE (2013) Eohelea sinuosa (Meunier, 1904) (Diptera, Ceratopogonidae) in Late Eocene Ambers of Europe. Paleontol J 47:503–512Google Scholar
  104. Perkovsky EE (2016) Tropical and Holarctic ants in Late Eocene ambers. Vestn Zool 50:111–122Google Scholar
  105. Perkovsky EE, Rasnitsyn AP (2013) First records of Scolebythidae and Chrysididae (Hymenoptera, Chrysidoidea) in Rovno amber. Vestn Zool 47:14–19Google Scholar
  106. Perkovsky EE, Wegierek P (2018) Aphid-Buchnera-Ant symbiosis, or why are aphids rare in the tropics and very rare further south? Earth Environ Sci Trans R Soc Edinb 107:297–310Google Scholar
  107. Perkovsky EE, Zosimovich VY, Vlaskin AP (2003) Rovno amber insects: first results of analysis. Russ Entomol J 12:119–126Google Scholar
  108. Perkovsky EE, Rasnitsyn AP, Vlaskin AP, Taraschuk MV (2007) A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. Afr Invertebr 48:229–245Google Scholar
  109. Perkovsky EE, Zosimovich VY, Vlaskin AP (2010) Rovno Amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 116–136Google Scholar
  110. Perkovsky EE (2017) Comparison of biting midges of the Early Eocene Cambay amber (India) and Late Eocene European Ambers supports the independent origin of European ambers. Vestn Zool 51:275–284Google Scholar
  111. Pielińska A (1990) The list of plant inclusions in Baltic amber from collections of the Museum of the Earth in Warsaw. Pr Muz Ziemi 41:147–148Google Scholar
  112. Pigg KB, DeVore ML (2016) A review of the plants of the Princeton chert (Eocene, British Columbia, Canada). Botany 94:661–681Google Scholar
  113. Pimenova NV (1937) The flora of the Tertiary sandstones of the western bank-region of the Dnieper in the Ukr.S.S.R. Trans Inst Geol Acad Sci Ukrainian SSR 12:1–135 (in Ukrainian) Google Scholar
  114. Pojarkova A (1939) Aruncus. In: Komarov VL (ed) Flora of USSR, 9. Nauka, Moscow, pp 309–312Google Scholar
  115. Popov SV, Akhmetiev MA, Bugrova EM, Lopatin AV, Amitrov OV, Andreyeva-Grigorovich AS, Zherikhin VV, Zaporozhets NI, Nikolaeva IA, Krasheninnikov VA, Kuzmicheva EI, Sychevskaja EK, Shcherba IG (2001) Biogeography of the northern Peri-Tethys from the Late Eocene to the Early Miocene. Part 1. Late Eocene. Paleontol J 35(Suppl. 1):1–68Google Scholar
  116. Potter D, Eriksson T, Evans RC, Oh SH, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43Google Scholar
  117. Prigge BA (2002) A new species of Prunus (Rosaceae) from the Mojave desert of California. Madroño 49:285–288Google Scholar
  118. Primack RB, Lloyd DG (1980) Andromonoecy in the New Zealand montane shrub manuka, Leptospermum scoparium (Myrtaceae). Am J Bot 67:361–368Google Scholar
  119. Qin H, Graham S, Gilbert MG (2007) Lythraceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 13. Science Press and Missouri Botanical Garden, Beijing, pp 274–289Google Scholar
  120. Rappsilber I (2016) Fauna und Flora des Bitterfelder Bernsteinwaldes—Eine Auflistung der bis 2014 publizierten Organismentaxa aus dem Bitterfelder Bernstein. Ampyx, HalleGoogle Scholar
  121. Rasband WS (2014) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/
  122. Roemer MJ (1847) Familiarum naturalium regni vegetabilis synopses monographicae, fasc 3, Rosiflorae. Landes-Industrie-Comptoir, VimariaeGoogle Scholar
  123. Roher JR (2015) Prunus. In: Flora of North America Editorial Committee (eds) Flora of North America, 9. Published online at http://www.efloras.org
  124. Ronse De Craene LP (1992) The androecium of the Magnoliophytina: characterisation and systematic importance. Dissertation, KU LeuvenGoogle Scholar
  125. Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164(5 Suppl.):S225–S235Google Scholar
  126. Ronse De Craene LP (2010) Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  127. Ronse De Craene LP, Smets E (1991) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269Google Scholar
  128. Ronse De Craene LP, Smets EF (1996) The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Repert 107:1–17Google Scholar
  129. Ross JH (1998) Caesalpiniaceae. In: McCarthy PM (ed) Flora of Australia, vol 12. Frankland Pty Ltd, Melbourne, pp 50–178Google Scholar
  130. Rye BL (1990) Thymelaeaceae (excluding Kelleria). In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 122–215Google Scholar
  131. Sadowski E-M (2017) Towards a new picture of the ‘Baltic amber forest’—flora, habitat types, and palaeoecology. Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium”. Georg-August-Universität, GöttingenGoogle Scholar
  132. Schönenberger J, von Balthazar M, Takahashi M, Xiao X, Crane PR, Herendeen PS (2012) Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Ann Bot 109:921–936PubMedPubMedCentralGoogle Scholar
  133. Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and Classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55:1069–1079PubMedGoogle Scholar
  134. Simutnik SA, Perkovsky EE (2018) Archaeocercus gen. nov. (Hymenoptera, Chalcidoidea, Encyrtidae) from Late Eocene Rovno Amber. Zootaxa 4441:543–548PubMedGoogle Scholar
  135. Smith SY, Collinson ME, Rudall PJ, Simpson DA, Marone F, Stampanoni M (2009) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proc Natl Acad Sci (USA) 106:12013–12018Google Scholar
  136. Spahr U (1993) Systematischer Katalog und Bibliographie der Bernstein-und Kopal-Flora. Stuttg Beitr Naturk. ser B, Geol Palaontol 195:1–99Google Scholar
  137. Stace CA (2007) Combretaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Flowering plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Heidelberg, pp 67–82Google Scholar
  138. Sutton MD, Rahman IA, Garwood RJ (2014) Techniques for virtual palaeontology. Wiley Blackwell, OxfordGoogle Scholar
  139. Tolkanitz VI, Perkovsky EE (2018) First record of the Late Eocene ichneumon fly Rasnitsynites tarsalis Kasparyan (Ichneumonidae, Townesitinae) in Ukraine confirms correlation of the Upper Eocene Lagerstätten. Paleontol J 52:31–34Google Scholar
  140. Tucker SC (2003) Floral development in legumes. Plant Physiol 131:911–926PubMedPubMedCentralGoogle Scholar
  141. Uhl D (2015) Preliminary note on fossil flowers and inflorescences from the late Oligocene of Enspel (Westerwald, W-Germany). Palaeobiodivers Palaeoenviron 95:47–53Google Scholar
  142. Vasconcelos TNC, Lucas EJ, Faria JEQ, Prenner G (2018) Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). Ann Bot 121:161–174PubMedGoogle Scholar
  143. Vidal JE (1968) Rosaceae 1 (excl. Rubus). In: Aubréville A (ed) Flore du Cambodge, du Laos et du Vietnam, vol 6. Muséum national d’histoire naturelle, Paris, pp 1–210Google Scholar
  144. Vidal JE (1970) Rosaceae. In: Smitinand T, Larsen K (eds), Flora of Thailand, 2(1). ASRCT Press, Bangkok, pp 31–74Google Scholar
  145. Wang Y, Gilbert MG, Mathew B, Brickell CD, Nevling LI (2007) Thymelaeaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 13. Science Press and Missouri Botanical Garden, Beijing, pp 213–250Google Scholar
  146. Watson L, Dallwitz MJ (1992) (onwards) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 19th October 2016. delta-intkey.comGoogle Scholar
  147. Weitschat W, Wichard W (2002) Atlas of plants and animals in Baltic amber. Friedrich Pfeil, MünchenGoogle Scholar
  148. Weitschat W, Wichard W (2010) Baltic amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Science Press, Manchester, pp 80–115Google Scholar
  149. Wen J, Shi W (2012) Revision of the Maddenia clade of Prunus (Rosaceae). PhytoKeys 11:39–59Google Scholar
  150. Wen J, Berggren ST, Lee CH, Ickert-Bond S, Yi TS, Yoo KO, Xie L, Shaw J, Potter D (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and ribosomal ITS sequences. J Syst Evol 46:322–332Google Scholar
  151. Wheeler EA, Landon J (1992) Late Eocene (Chadronian) dicotyledonous woods from Nebraska: evolutionary and ecological significance. Rev Palaeobot Palynol 74:267–282Google Scholar
  152. Wheeler EA, Richard RA, Barghoorn ES (1978) Fossil dicotyledonous woods from Yellowstone National Park II. J Arnold Arbor 59:1–31Google Scholar
  153. Wilson PG (2011) Myrtaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, pp 212–271Google Scholar
  154. Wolfe LM, Drapalik DJ (1999) Variation in the degree of andromonoecy in Prunus caroliniana. Castanea 64:259–262Google Scholar
  155. Wolfe JA, Wehr W (1988) Rosaceous Chamaebatiaria-like foliage from the Paleogene of western North America. Aliso 12:177–200Google Scholar
  156. Xu L, Chen D, Zhu X, Huang P, Wei Z, Sa R, Zhang D, Bao B, Wu D, Sun H, Gao X, Liu Y, Chang Z, Li J, Zhang M, Podlech D, Ohashi H, Larsen K, Welsh SL, Vincent MA, Gilbert MG, Pedley L, Schrire BD, Yakovlev GP, Thulin M, Nielsen IC, Choi B-H, Turland NJ, Polhill RM, Larsen SS, Hou D, Iokawa Y, Wilmot-Dear CM, Kenicer G, Nemoto T, Lock JM, Delgado Salinas A, Kramina TE, Brach AR, Bartholomew B, Sokoloff DD (2010) Fabaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 10. Science Press and Missouri Botanical Garden, Beijing, pp 1–577Google Scholar
  157. Yakovlev GP (1991) Legumes of the world [Bobovye zemnogo shara]. Nauka, LeningradGoogle Scholar
  158. Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS (2017) Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol 214:1355–1367PubMedGoogle Scholar
  159. Zhao L, Jiang X-W, Zuo Y-J, Liu X-L, Chin S-W, Haberle R, Potter D, Chang Z-Y, Wen J (2016) Multiple events of allopolyploidy in the evolution of the racemose lineages in Prunus (Rosaceae) based on integrated evidence from nuclear and plastid data. PLoS ONE 11:e0157123PubMedPubMedCentralGoogle Scholar
  160. Zimmerman E, Prenner G, Bruneau A (2013) Floral morphology of Apuleia leiocarpa (Dialiinae: Leguminosae), an unusual andromonoecious legume. Int J Plant Sci 174:154–160Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Dmitry D. Sokoloff
    • 1
    Email author
  • Michael S. Ignatov
    • 1
    • 2
  • Margarita V. Remizowa
    • 1
  • Maxim S. Nuraliev
    • 1
    • 3
  • Vladimir Blagoderov
    • 4
  • Amin Garbout
    • 5
  • Evgeny E. Perkovsky
    • 6
  1. 1.Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Tsitsin Main Botanical Garden of the Russian Academy of SciencesMoscowRussia
  3. 3.Joint Russian-Vietnamese Tropical Scientific and Technological CenterHanoiVietnam
  4. 4.Department of Natural SciencesNational Museums ScotlandEdinburghUK
  5. 5.Core Research LabsNatural History MuseumLondonUK
  6. 6.Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations