Advertisement

Journal of Plant Research

, Volume 131, Issue 5, pp 849–864 | Cite as

Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha

  • Hiroyoshi Kubo
  • Shunsuke Nozawa
  • Takuma Hiwatashi
  • Youichi Kondou
  • Ryo Nakabayashi
  • Tetsuya Mori
  • Kazuki Saito
  • Kojiro Takanashi
  • Takayuki Kohchi
  • Kimitsune Ishizaki
Regular Paper
  • 476 Downloads

Abstract

R2R3-MYB transcription factors constitute the largest gene family among plant transcription factor families. They became largely divergent during the evolution of land plants and regulate various biological processes. The functions of R2R3-MYBs are mostly characterized in seed plants but are poorly understood in non-seed plants. Here, we examined the function of two R2R3-MYB genes of Marchantia polymorpha (Mapoly0073s0038 and Mapoly0006s0226) that are closely related to subgroup 4 of the R2R3-MYB family. We performed LC/MS/MS metabolomics, RNA-seq analysis and expression analysis in overexpressors and knockout mutants of MpMYB14 and MpMYB02. Overexpression of MpMYB14 remarkably increased the amount of riccionidins, which are specific anthocyanins in liverworts and a few flowering plants. In contrast, overexpression of MpMYB02 increased the amount of several marchantins, which are characteristic cyclic bis (bibenzyl ether) compounds in M. polymorpha and related liverworts. Knockouts of MpMYB14 and MpMYB02 abolished the accumulation of riccionidins and marchantins, respectively. The expression of MpMYB14 was up-regulated by UV-B irradiation, N deficiency, and NaCl treatment, whereas the expression of MpMYB02 was down-regulated by NaCl treatment. Our results suggest that the regulatory framework of phenolic metabolism by R2R3-MYB was already established in early land plants.

Keywords

Anthocyanin Marchantia polymorpha Marchantin Phenolic metabolism R2R3-MYB 

Notes

Acknowledgements

We thank Dr. Hironobu Takahashi (Tokushima Bunri University) and Dr. Yoshinori Asakawa (Tokushima Bunri University) for providing marchantin A and Dr. Shigeo Sugano (Tokushima University) and Dr. Keishi Osakabe (Tokushima University) for providing pMpGE_En03 and pMpGE011 vectors.

Supplementary material

10265_2018_1044_MOESM1_ESM.pdf (5.6 mb)
Supplementary material 1 (PDF 5700 KB)

References

  1. Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1CrossRefPubMedGoogle Scholar
  2. A-H-Mackerness S (2000) Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul 32:27–39CrossRefGoogle Scholar
  3. Albert N, Thrimawithana A, McGhie T, Clayton W, Deroles S, Schwinn K, Bowman J, Jordan B, Davies K (2018) Genetic analysis of the liverwort Marchantia polymorpha reveals that R2R3MYB activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytol.  https://doi.org/10.1111/nph.15002 CrossRefPubMedGoogle Scholar
  4. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612CrossRefPubMedGoogle Scholar
  5. Asakawa Y, Ludwiczuk A, Nagashima F (2012) Chemical constituents of marchantiophyta. Chemical constituents of bryophytes: Bio- and chemical diversity, biological activity, and chemosystematics. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products. Springer, Wien, pp 25–562Google Scholar
  6. Asakawa Y, Ludwiczuk A, Nagashima F (2013) Phytochemical and biological studies of bryophytes. Phytochemistry 91:52–80CrossRefPubMedGoogle Scholar
  7. Aya K, Hiwatashi Y, Kojima M, Sakakibara H, Ueguchi-Tanaka M, Hasebe M, Matsuoka M (2011) The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nat Commun 2:544CrossRefPubMedGoogle Scholar
  8. Bendz G, Mårtensson O, Terenius L (1962) Moss pigments I. The anthocyanins of Bryum cryophilum O. Mårt. Acta Chem Scand 16:1183–1190CrossRefGoogle Scholar
  9. Böttcher C, Krähmer A, Stürtz M, Widder S, Schulz H (2017) Comprehensive metabolite profiling of onion bulbs (Allium cepa) using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Metabolomics 13:35CrossRefGoogle Scholar
  10. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304CrossRefPubMedGoogle Scholar
  11. Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet 5:e1000430CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779CrossRefPubMedGoogle Scholar
  13. Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894CrossRefPubMedGoogle Scholar
  14. Couée I, Sulmon C, Gouesbet G, Amrani AEI (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459CrossRefPubMedGoogle Scholar
  15. Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366CrossRefPubMedGoogle Scholar
  16. De Vos M, Denekamp M, Dicke M, Vuylsteke M, Van Loon LC, Smeekens SCM, Pieterse CMJ (2006) The Arabidopsis thaliana transcription factor AtMYB102 functions in defense against the insect herbivore Pieris rapae. Plant Signal Behav 1:305–311CrossRefPubMedPubMedCentralGoogle Scholar
  17. Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178CrossRefGoogle Scholar
  18. Du H, Liang Z, Zhao S, Nan MG, Tran LSP, Lu K, Huang YB, Li JN (2015) The evolutionary history of R2R3-MYB proteins across 50 eukaryotes: new insights into subfamily classification and expansion. Sci Rep 5:11037CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dubos C, Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routabou JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953CrossRefPubMedGoogle Scholar
  20. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581CrossRefPubMedGoogle Scholar
  21. Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:7–17CrossRefPubMedGoogle Scholar
  22. Friederich S, Rueffer M, Asakawa Y, Zenk MH (1999) Cytochromes P-450 catalyze the formation of marchantins A and C in Marchantia polymorpha. Phytochemistry 52:1195–1202CrossRefGoogle Scholar
  23. Gao C, Xing D, Li L, Zhang L (2008) Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta 227:755–767CrossRefPubMedGoogle Scholar
  24. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827CrossRefPubMedGoogle Scholar
  25. Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891PubMedPubMedCentralGoogle Scholar
  26. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  27. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voß U, Jürgens G, Ito M (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101–1110CrossRefPubMedGoogle Scholar
  28. Hatier J-HB, Gould KS (2009) Anthocyanin function in vegetative organs. In: Gould K, Davies K, Winefield C (eds) Anthocyanin: biosynthesis, functions, and applications. Springer Science + Business Media, LLC, New York, pp 1–19Google Scholar
  29. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282CrossRefPubMedGoogle Scholar
  30. Hsiao G, Teng CM, Wu CL, Ko FN (1996) Marchantin H as a natural antioxidant and free radical scavenger. Arch Biochem Biophys 334:18–26CrossRefPubMedGoogle Scholar
  31. Ishizaki K (2017) Evolution of land plants: insights from molecular studies on basal lineages. Biosci Biotechnol Biochem 81:73–80CrossRefPubMedGoogle Scholar
  32. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L. an emerging model for plant biology. Plant Cell Physiol 49:1084–1091CrossRefPubMedGoogle Scholar
  33. Ishizaki K, Kohchi T, Yamato KT (2016) Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol 57:262–270CrossRefPubMedGoogle Scholar
  34. Ito M (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res 118:61–69CrossRefPubMedGoogle Scholar
  35. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045CrossRefPubMedGoogle Scholar
  37. Kageyama A, Ishizaki K, Kohchi T, Matsuura H, Takahashi K (2015) Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha. Phytochemistry 117:547–553CrossRefPubMedGoogle Scholar
  38. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:36CrossRefGoogle Scholar
  39. Kobayashi K, Suzuki T, Iwata E, Magyar Z, Bögre L, Ito M (2015) MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes. Transcription 6:106–111CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276CrossRefPubMedGoogle Scholar
  41. Kunz S, Burkhardt G, Becker H (1994) Riccionidins a and b, anthocyanidins from the cell walls of the liverwort Ricciocarpos natans. Phytochemistry 35:233–235CrossRefGoogle Scholar
  42. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  43. Lea U, Slimestad R, Smedvig P, Lillo C (2007) Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 225:1245–1253CrossRefPubMedGoogle Scholar
  44. Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483CrossRefPubMedGoogle Scholar
  45. Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, Udvardi MK (2009) AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol 149:1761–1772CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu JJ, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436CrossRefPubMedGoogle Scholar
  47. Lloyd AM, Schena M, Walbot V, Davis RW (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266:436–439CrossRefPubMedGoogle Scholar
  48. Lotkowska ME, Tohge T, Fernie AR, Xue GP, Balazadeh S, Mueller-Roeber B (2015) The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol 169:1862–1880PubMedPubMedCentralGoogle Scholar
  49. Magallón S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573CrossRefPubMedGoogle Scholar
  50. Markham KR, Porter IJ (1974) Flavonoids of the liverwort Marchantia polymorpha. Phytochemistry 13:1937–1942CrossRefGoogle Scholar
  51. McClure JW (1975) Physiology and functions of flavonoids. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Academic Press, San Francisco, pp 990–1055Google Scholar
  52. Mu L, Cao YR, Liu YF, Lei G, Zou HF, Liao Y, Wang HW, Zhang WK, Ma B, Du JZ, Yuan M, Zhang JS, Chen SY (2009) An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 19:1291–1304CrossRefPubMedGoogle Scholar
  53. Müller D, Schmitz G, Theres K (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:586–597CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114PubMedPubMedCentralGoogle Scholar
  55. Newman LJ, Perazza DE, Juda L, Campbell MM (2004) Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J 37:239–250CrossRefPubMedGoogle Scholar
  56. Oh JE, Kim YH, Kim JH, Kwon YR, Lee H (2011) Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment. J Korean Soc Appl Biol Chem 54:79–88CrossRefGoogle Scholar
  57. Ohta Y, Abe S, Komura H, Kobayashi M (1983) Prelunularic acid, a probable immediate precursor of lunularic acid. First example of a “prearomatic” intermediate in the phenylpropanoid-poly malonate pathway. J Am Chem Soc 105:4480–4481CrossRefGoogle Scholar
  58. Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369CrossRefPubMedGoogle Scholar
  59. Quattrocchio F, Baudry A, Lepiniec L, Grothwold E (2006) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 97–122CrossRefGoogle Scholar
  60. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110CrossRefPubMedGoogle Scholar
  61. Rosinski JA, Atchley WR (1998) Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol 46:74–83CrossRefPubMedGoogle Scholar
  62. Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248CrossRefPubMedGoogle Scholar
  63. Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jurgens G, Hülskamp M (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88:10421–10425CrossRefPubMedGoogle Scholar
  65. Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357CrossRefPubMedGoogle Scholar
  66. Stracke R, Werber M, Weisshaar B (2001) The R2R3-Myb gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456CrossRefPubMedGoogle Scholar
  67. Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated target mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:475–481CrossRefPubMedGoogle Scholar
  69. Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tohge T, Nishiyama Y, Yokota-Hirai M, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235CrossRefPubMedGoogle Scholar
  71. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-sEq. Nat Biotechnol 31:46–53CrossRefPubMedGoogle Scholar
  72. Uchida K, Akashi T, Aoki T (2017) The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol 58:398–408CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277:1113–1116CrossRefPubMedGoogle Scholar
  74. Weston K, Bishop JM (1989) Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb. Cell 58:85–93CrossRefPubMedGoogle Scholar
  75. Williams CE, Grotewold E (1997) Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities. J Biol Chem 272:563–571CrossRefPubMedGoogle Scholar
  76. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182CrossRefPubMedGoogle Scholar
  77. Xing J, Xie C, Qu J, Guo H, Lv B, Lou H (2007) Rapid screening for bisbibenzyls in bryophyte crude extracts using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:2467–2476CrossRefPubMedGoogle Scholar
  78. Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204CrossRefPubMedGoogle Scholar
  79. Zhang Y, Zhang X, Liu B, Wang W, Liu X, Chen C, Liu X, Yang S, Ren H (2014) A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway. J Exp Bot 65:3201–3213CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Hiroyoshi Kubo
    • 1
  • Shunsuke Nozawa
    • 1
  • Takuma Hiwatashi
    • 2
  • Youichi Kondou
    • 3
  • Ryo Nakabayashi
    • 4
  • Tetsuya Mori
    • 4
  • Kazuki Saito
    • 4
    • 5
  • Kojiro Takanashi
    • 1
    • 6
  • Takayuki Kohchi
    • 7
  • Kimitsune Ishizaki
    • 2
  1. 1.Department of Biology, Faculty of ScienceShinshu UniversityMatsumotoJapan
  2. 2.Graduate School of ScienceKobe UniversityKobeJapan
  3. 3.College of Science and EngineeringKanto Gakuin UniversityYokohamaJapan
  4. 4.Center for Sustainable Resource ScienceRIKENYokohamaJapan
  5. 5.Graduate School of Pharmaceutical ScienceChiba UniversityChibaJapan
  6. 6.Institute of Mountain ScienceShinshu UniversityMatsumotoJapan
  7. 7.Graduate School of BiostudiesKyoto UniversityKyotoJapan

Personalised recommendations