Integrated taxonomy of the Asplenium normale complex (Aspleniaceae) in China and adjacent areas

Abstract

The Asplenium normale D. Don complex comprises several taxa that are either diploid or tetraploid. The tetraploids are assumed to have originated from diploid ancestors by relatively recent autopolyploidization or allopolyploidization. Some of the diploids are readily recognized morphologically but most of the taxa have until now been placed into a single species. However, phylogenetic studies have challenged this treatment and emphasized the notion that the taxonomic treatment of this complex needs to be revised. An integrative taxonomic approach was employed to delimit species in the complex using cytological, morphological, and DNA sequence data. Initially, we employed a diploid first approach to establish a robust taxonomic framework. Special efforts were made to collect and identify the diploid progenitors of each polyploid lineage identified in the plastid DNA based phylogenetic hypothesis. A total of six distinct diploid species were identified. The distinctive nature of the six diploids is strongly supported by sequence differences in plastid DNA and nuclear loci, as well as by the results of morphometric analysis. Diagnostic morphological characters were identified to distinguish the six diploid species, resulting in their revised taxonomy, which includes two novel species, namely, Asplenium normaloides and A. guangdongense. Further studies to strengthen the taxonomic classification of all of the tetraploid taxa are warranted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  2. Barrington DS, Haufler CH, Werth CR (1989) Hybridization, reticulation, and species concepts in ferns. Am Fern J 79:55–64

    Article  Google Scholar 

  3. Beck JB, Windham MD, Yatskievych G, Pryer KM (2010) A diploids-first approach to species delimitation and interpreting. Syst Bot 35:223–234

    Article  Google Scholar 

  4. Bennert HW, Fischer G (1993) Biosystematics and evolution of the Asplenium trichomanes complex. Webbia 48:743–760

    Google Scholar 

  5. Brackenridge WD (1854) United states exploring expedition, VOLUME XVI-Botany-Filices. Authority of congress, C. Sherman, Philadelphia

  6. Chang YF, Li J, Lu SG, Schneider H (2013) The species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon 62:673–687

    Article  Google Scholar 

  7. Chang YF, Li J, Lu SG, Schneider H (2014) Systematic position and polyploid origin of the fern Asplenium kiangsuense (Aspleniaceae). Pl Divers Resour 36:7–12

    CAS  Google Scholar 

  8. Ching RC, Jin YX (1977) Flora Jiangsuensis 1: 465. Jiangsu Science and Technology Publishing House, Nanjing

    Google Scholar 

  9. Ching RC, Zhang CF (1983) New ferns of Zhejiang Province. Bull Bot Res 3:37–39

    Google Scholar 

  10. Christensen C (1932) The Pteridophyta of Madagascar. Dansk Bot Ark 7:1–253

    Google Scholar 

  11. Clark J, Hidalgo O, Pellicer J, Liu HM, Marquardt J, Robert Y, Christenhusz M, Zhang SZ, Gibby M, Leitch IJ, Schneider H (2016) Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol 210:1072–1082

    CAS  Article  Google Scholar 

  12. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  Google Scholar 

  13. Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    CAS  Article  Google Scholar 

  14. Don D (1825) Prodromus florae Nepalensis. J. Gale, London

    Google Scholar 

  15. Dyer RJ, Savolainen V, Schneider H (2012) Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Ann Bot (Oxford) 110:1515–1529

    Article  Google Scholar 

  16. Ebihara A, Nitta JH, Ito M (2010) Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PloS ONE 5:e15136

    Article  Google Scholar 

  17. Erkt L, Stech M (2008) A morphometric study and revision of the Asplenium trichomanes group in the Czech Republic. Preslia 80:325–347

    Google Scholar 

  18. Fraser-Jenkins CR (2008) Taxonomic revision of three hundred Indian Subcontinental Pteridophytes with a revised census-list; a new picture of fern-taxonomy and nomenclature in the Indian subcontinent. Bishen Singh Mahendra Pal Singh, Dehra Dun, p 168

    Google Scholar 

  19. Fujiwara T, Uehara A, Iwashina T, Matsumoto A, Chang YH, Chao YS, Watano Y (2017) Allotetraploid cryptic species in Asplenium normale in the Japanese Archipelago, detected by chemotaxonomic and multi-locus genotype approaches. Am J Bot 104:1390–1407

    CAS  Article  Google Scholar 

  20. Ghatak J (1977) Biosystematic survey of pteridophytes from Shevaroy Hills, South India. Nucleus 20:105–108

    Google Scholar 

  21. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  Article  Google Scholar 

  22. Hall T (2004). BioEdit 7.0.1. Department of Microbiology, North Carolina State University. http://www.mbio.ncsu.edu/BioEdit/bioedit.html. Accessed 7 Aug 2004

  23. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    CAS  Article  Google Scholar 

  24. Ishikawa H, Watano Y, Kano K, Ito M, Kurita S (2002) Development of primer sets for PCR amplification of the pgiC gene in ferns. J Plant Res 115:65–70

    CAS  Article  Google Scholar 

  25. Ito H (1972) A new variety of Asplenium normale. J Jpn Bot 47:186–187

    Google Scholar 

  26. Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299

    CAS  Article  Google Scholar 

  27. Iwashina T, Matsumoto S (1994) Flavonoid variation and evolution in Asplenium normale and related species (Aspleniaceae). J Plant Res 107:275–282

    CAS  Article  Google Scholar 

  28. Iwatsuki K (1995) Flora of Japan. Vol. I. Kodansha, Tokyo

    Google Scholar 

  29. Kurata S (1963) Notes on Japanese ferns (29). J Geobot (Kanazawa) 11:98–102

    Google Scholar 

  30. Li FW, Kuo LY, Chang YH, Hsu TC, Hung HC, Chiou WL, Rothfels CJ, Huang YM (2016) Asplenium pifongiae (Aspleniaceae: Polypodiales), a new species from Taiwan. Syst Bot 41:24–31

    CAS  Article  Google Scholar 

  31. Lin YX (1999) Flora Reipublicae Popularis Sinicae vol 4(2). Science Press, Beijing

    Google Scholar 

  32. Lin YX, Viane R (2012) Flora of China, vol. 2, Aspleniaceae. Science Press, Beijing

    Google Scholar 

  33. Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in plants. Am J Bot 91:1700–1708

    Article  Google Scholar 

  34. Lovis JD (1978) Evolutionary patterns and processes in ferns. Adv Bot Res 4:229–440

    Article  Google Scholar 

  35. Matsumoto S (1975) Cyto-ecological study of three types of Asplenium normale. J Nippon Fernist Club 2:338–340

    Google Scholar 

  36. Matsumoto S, Nakaike T (1988) Chromosome numbers of some ferns in Kathmandu Nepal. In: Watanabe M, Malla SB (eds) Cryptogams of the Himalayas, vol 1. Department of Botany. National Science Museum, Tsukuba, pp 177–185

    Google Scholar 

  37. Matsumoto S, Iwashina T, Kitajima J, Mitsuta S (2003) Evidence by flavonoid markers of four natural hybrids among Asplenium normale and related species (Aspleniaceae) in Japan. Biochem Syst Ecol 31:51–58

    CAS  Article  Google Scholar 

  38. Mettenius G (1859) Über einige Farngattungen. VI. Asplenium. Abh Senckenberg Naturf Ges 3:110–254

    Google Scholar 

  39. Murakami N, Nogami S, Watanabe M, Iwatsuki K (1999) Phylogeny of Aspleniaceae inferred from rbcL nucleotide sequences. Am Fern J 89:232–343

    Article  Google Scholar 

  40. Nakaike T (1992) New flora of Japan, Pteridophyta, revised and enlarged. Shibundo, Tokyo

    Google Scholar 

  41. Ohlsen DJ, Perrie LR, Shepherd LD, Brownsey PJ, Bayly MJ (2014a) Phylogeny of the fern family Aspleniaceae in Australasia and the south-western Pacific. Aust Syst Bot 27:355–371

    Article  Google Scholar 

  42. Ohlsen DJ, Perrie LR, Shepherd LD, Brownsey PJ, Bayly MJ (2014b) Investigation of species boundaries and relationships in the Asplenium paleaceum complex (Aspleniaceae) using AFLP fingerprinting and chloroplast and nuclear DNA sequences. Aust Syst Bot 27:378–394

    Article  Google Scholar 

  43. Perrie LR, Brownsey PJ (2005) Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data. Am Fern J 95:1–21

    Article  Google Scholar 

  44. Perrie LR, Shepherd LD, de Lange PJ, Brownsey PJ (2010) Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns. Mol Ecol 19:2916–2932

    CAS  Article  Google Scholar 

  45. Pinter I, Bakker F, Barrett J, Cox C, Gibby M, Henderson S, Morgan-Richards M, Rumsey F, Russell S, Trewick S, Schneider H, Vogel J (2002) Phylogenetic and biosystematic relationships in four highly disjunct polyploid complexes in the subgenera. Ceterach and Phyllitis in Asplenium (Aspleniaceae). Organ Divers Evol 2:299–311

    Article  Google Scholar 

  46. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    CAS  Article  Google Scholar 

  47. PPG1 (2016) A community based classification of ferns and lycophytes. J Syst Evol 54:563–603

    Article  Google Scholar 

  48. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  49. Riedel A, Sagata K, Suhardjono YR, Tänzler R, Balke M (2013) Integrative taxonomy on the fast track-towards more sustainability in biodiversity research. Front Zool 10:15

    Article  Google Scholar 

  50. Roux JP (2009) Synopsis of the lycopodiophyta and pteridophyta of Africa, Madagascar and neighboring islands. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  51. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Croiser RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Ann Rev Entomol 55:421–438

    CAS  Article  Google Scholar 

  52. Schneider H, Russell SJ, Cox CJ, Bakker F, Henderson S, Rumsey F, Barrett J, Gibby M, Vogel JC (2004) Chloroplast phylogeny of Asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Syst Bot 29:260–274

    Article  Google Scholar 

  53. Schneider H, Ranker TA, Russell SJ, Cranfill R, Geiger JMO, Aguraiuja R, Wood KR, Grundmann M, Kloberdanz K, Vogel JC (2005) Origin of the endemic fern genus Diellia coincides with the renewal of Hawaiian terrestrial life in the Miocene. Proc R Soc Lond Ser B Biol Sci 272:455–460

    Article  Google Scholar 

  54. Schneider H, Navarro-gomez A, Russell SJ, Ansell S, Grundmann M, Vogel J (2013) Exploring the utility of three nuclear regions to reconstruct reticulate evolution in the fern genus Asplenium. J Syst Evol 51:142–153

    Article  Google Scholar 

  55. Schneider H, Liu HM, Chang YF, Ohlsen D, Perrie LR, Shepherd L, Kessler M, Karger D, Hennequin S, Marquardt J, Russell S, Ansell S, Lu NT, Kamau P, Regalado JL, Heinrichs L, Ebihara J, Smith A, Gibby AR M (2017) Neo-and Palaeopolyploidy contribute to the species diversity of Asplenium—the most species rich genus of ferns. J Syst Evol 55:353–364

    Article  Google Scholar 

  56. Schuettpelz E, Grusz AL, Windham MD, Pryer KM (2008) The utility of nuclear gapCp in resolving polyploid fern origins. Syst Bot 33:621–629

    Article  Google Scholar 

  57. Shepherd LD, Perrie LR, Brownsey PJ (2008) Low copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Mol Phylogen Evol 49:240–248

    CAS  Article  Google Scholar 

  58. Staden R, Beal KF, Bonfield JK (2000) The staden package, 1998. Methodes Mol Biol 132:115–130

    CAS  Google Scholar 

  59. Suda J, Krahulcova A, Travnicekt P, Krahulex F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450

    Article  Google Scholar 

  60. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  61. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    CAS  Article  Google Scholar 

  62. Véla E, Rebbas K, Martin R, de Premorel G, Tison JM (2015) Waiting for integrative taxonomy: Morphospecies as an operational proxy for the radiative and reticulate genus Ophrys L. (Orchidaceae)? Eur J Environ Sci 5:153–157

    Article  Google Scholar 

  63. Vogel JC, Russell SJ, Rumsey FJ, Barrett JA, Gibby M (1998) Evidence for maternal transmission of chloroplast DNA in the genus Asplenium (Aspleniaceae, Pteridophyta). Bot Acta 111:247–249

    CAS  Article  Google Scholar 

  64. Wagner WH (1954) Reticulate evolution in the Appalachian Aspleniums. Evolution 8:103–118

    Article  Google Scholar 

  65. Wagner WH (1993) New species of Hawaiian pteridophytes. Contrib Univ Mich Herb 19:63–82

    Google Scholar 

  66. Wagner WH, Chen KL (1965) Abortion of spores and sporangia as a tool in the detection of Dryopteris Hybrids. Am Fern J 55:9–29

    Article  Google Scholar 

  67. Wang ZR (1988) A preliminary report on the cytology of some species of Asplenium from China. In: Shing K-H, Kramer KU (eds) Proceedings of the international symposium on systematic pteridology. China Science and Technology Press, Beijing

    Google Scholar 

  68. Weng RF, Qiu SP (1988) Chromosome counts of some ferns from Zhejiang. Investig Stud Nat 8:43–52

    Google Scholar 

  69. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851

    Article  Google Scholar 

  70. Wood TE, Takebayashi N, Barker M, Mayrose I, Greenspoon P, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:1385–13879

    Article  Google Scholar 

  71. Wu SH (1989) Materials of Chinese Aspleniaceae (I). Bull Bot Res 2:79–95

    Google Scholar 

  72. Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinform 4:1–6

    Article  Google Scholar 

  73. Zhu WM (1992) Taxonomic notes on some pteridophytes from Yunnan (mainly Dulongjiang and neighbouring regions). Acta Bot Yunnan 5:34–58

    Google Scholar 

Download references

Acknowledgements

We are grateful to the herbarium curators for images of type specimens and for the help they gave to us in the searching for type materials. We thank several colleagues who assisted with collections, including Yunnong Tang, Jianwu Li, Hao Zhang, Huafeng Hong, and Guocheng Zhang in China; and Tian-Chuan Hsu and Li-Yaung Kuo in Taiwan. This work was supported by the following projects: National Natural Science Foundation of China (31500171) and the Special Funds for the Young Scholars of Taxonomy of the Chinese Academy of Sciences (ZSBR-008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanfen Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 28 KB)

Supplementary material 2 (PDF 332 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Ebihara, A., Lu, S. et al. Integrated taxonomy of the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. J Plant Res 131, 573–587 (2018). https://doi.org/10.1007/s10265-018-1032-y

Download citation

Keywords

  • Aspleniaceae
  • Asplenium
  • Species complex
  • Morphometric
  • Taxonomy