Advertisement

Journal of Plant Research

, Volume 131, Issue 4, pp 573–587 | Cite as

Integrated taxonomy of the Asplenium normale complex (Aspleniaceae) in China and adjacent areas

  • Yanfen Chang
  • Atsushi Ebihara
  • Shugang Lu
  • Hongmei Liu
  • Harald Schneider
Regular Paper

Abstract

The Asplenium normale D. Don complex comprises several taxa that are either diploid or tetraploid. The tetraploids are assumed to have originated from diploid ancestors by relatively recent autopolyploidization or allopolyploidization. Some of the diploids are readily recognized morphologically but most of the taxa have until now been placed into a single species. However, phylogenetic studies have challenged this treatment and emphasized the notion that the taxonomic treatment of this complex needs to be revised. An integrative taxonomic approach was employed to delimit species in the complex using cytological, morphological, and DNA sequence data. Initially, we employed a diploid first approach to establish a robust taxonomic framework. Special efforts were made to collect and identify the diploid progenitors of each polyploid lineage identified in the plastid DNA based phylogenetic hypothesis. A total of six distinct diploid species were identified. The distinctive nature of the six diploids is strongly supported by sequence differences in plastid DNA and nuclear loci, as well as by the results of morphometric analysis. Diagnostic morphological characters were identified to distinguish the six diploid species, resulting in their revised taxonomy, which includes two novel species, namely, Asplenium normaloides and A. guangdongense. Further studies to strengthen the taxonomic classification of all of the tetraploid taxa are warranted.

Keywords

Aspleniaceae Asplenium Species complex Morphometric Taxonomy 

Notes

Acknowledgements

We are grateful to the herbarium curators for images of type specimens and for the help they gave to us in the searching for type materials. We thank several colleagues who assisted with collections, including Yunnong Tang, Jianwu Li, Hao Zhang, Huafeng Hong, and Guocheng Zhang in China; and Tian-Chuan Hsu and Li-Yaung Kuo in Taiwan. This work was supported by the following projects: National Natural Science Foundation of China (31500171) and the Special Funds for the Young Scholars of Taxonomy of the Chinese Academy of Sciences (ZSBR-008).

Supplementary material

10265_2018_1032_MOESM1_ESM.xlsx (29 kb)
Supplementary material 1 (XLSX 28 KB)
10265_2018_1032_MOESM2_ESM.pdf (332 kb)
Supplementary material 2 (PDF 332 KB)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Barrington DS, Haufler CH, Werth CR (1989) Hybridization, reticulation, and species concepts in ferns. Am Fern J 79:55–64CrossRefGoogle Scholar
  3. Beck JB, Windham MD, Yatskievych G, Pryer KM (2010) A diploids-first approach to species delimitation and interpreting. Syst Bot 35:223–234CrossRefGoogle Scholar
  4. Bennert HW, Fischer G (1993) Biosystematics and evolution of the Asplenium trichomanes complex. Webbia 48:743–760Google Scholar
  5. Brackenridge WD (1854) United states exploring expedition, VOLUME XVI-Botany-Filices. Authority of congress, C. Sherman, PhiladelphiaGoogle Scholar
  6. Chang YF, Li J, Lu SG, Schneider H (2013) The species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon 62:673–687CrossRefGoogle Scholar
  7. Chang YF, Li J, Lu SG, Schneider H (2014) Systematic position and polyploid origin of the fern Asplenium kiangsuense (Aspleniaceae). Pl Divers Resour 36:7–12Google Scholar
  8. Ching RC, Jin YX (1977) Flora Jiangsuensis 1: 465. Jiangsu Science and Technology Publishing House, NanjingGoogle Scholar
  9. Ching RC, Zhang CF (1983) New ferns of Zhejiang Province. Bull Bot Res 3:37–39Google Scholar
  10. Christensen C (1932) The Pteridophyta of Madagascar. Dansk Bot Ark 7:1–253Google Scholar
  11. Clark J, Hidalgo O, Pellicer J, Liu HM, Marquardt J, Robert Y, Christenhusz M, Zhang SZ, Gibby M, Leitch IJ, Schneider H (2016) Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol 210:1072–1082CrossRefPubMedGoogle Scholar
  12. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefPubMedGoogle Scholar
  13. Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244CrossRefPubMedGoogle Scholar
  14. Don D (1825) Prodromus florae Nepalensis. J. Gale, LondonGoogle Scholar
  15. Dyer RJ, Savolainen V, Schneider H (2012) Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Ann Bot (Oxford) 110:1515–1529CrossRefGoogle Scholar
  16. Ebihara A, Nitta JH, Ito M (2010) Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan. PloS ONE 5:e15136CrossRefPubMedPubMedCentralGoogle Scholar
  17. Erkt L, Stech M (2008) A morphometric study and revision of the Asplenium trichomanes group in the Czech Republic. Preslia 80:325–347Google Scholar
  18. Fraser-Jenkins CR (2008) Taxonomic revision of three hundred Indian Subcontinental Pteridophytes with a revised census-list; a new picture of fern-taxonomy and nomenclature in the Indian subcontinent. Bishen Singh Mahendra Pal Singh, Dehra Dun, p 168Google Scholar
  19. Fujiwara T, Uehara A, Iwashina T, Matsumoto A, Chang YH, Chao YS, Watano Y (2017) Allotetraploid cryptic species in Asplenium normale in the Japanese Archipelago, detected by chemotaxonomic and multi-locus genotype approaches. Am J Bot 104:1390–1407CrossRefPubMedGoogle Scholar
  20. Ghatak J (1977) Biosystematic survey of pteridophytes from Shevaroy Hills, South India. Nucleus 20:105–108Google Scholar
  21. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  22. Hall T (2004). BioEdit 7.0.1. Department of Microbiology, North Carolina State University. http://www.mbio.ncsu.edu/BioEdit/bioedit.html. Accessed 7 Aug 2004
  23. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  24. Ishikawa H, Watano Y, Kano K, Ito M, Kurita S (2002) Development of primer sets for PCR amplification of the pgiC gene in ferns. J Plant Res 115:65–70CrossRefPubMedGoogle Scholar
  25. Ito H (1972) A new variety of Asplenium normale. J Jpn Bot 47:186–187Google Scholar
  26. Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299CrossRefGoogle Scholar
  27. Iwashina T, Matsumoto S (1994) Flavonoid variation and evolution in Asplenium normale and related species (Aspleniaceae). J Plant Res 107:275–282CrossRefGoogle Scholar
  28. Iwatsuki K (1995) Flora of Japan. Vol. I. Kodansha, TokyoGoogle Scholar
  29. Kurata S (1963) Notes on Japanese ferns (29). J Geobot (Kanazawa) 11:98–102Google Scholar
  30. Li FW, Kuo LY, Chang YH, Hsu TC, Hung HC, Chiou WL, Rothfels CJ, Huang YM (2016) Asplenium pifongiae (Aspleniaceae: Polypodiales), a new species from Taiwan. Syst Bot 41:24–31CrossRefGoogle Scholar
  31. Lin YX (1999) Flora Reipublicae Popularis Sinicae vol 4(2). Science Press, BeijingGoogle Scholar
  32. Lin YX, Viane R (2012) Flora of China, vol. 2, Aspleniaceae. Science Press, BeijingGoogle Scholar
  33. Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in plants. Am J Bot 91:1700–1708CrossRefPubMedCentralPubMedGoogle Scholar
  34. Lovis JD (1978) Evolutionary patterns and processes in ferns. Adv Bot Res 4:229–440CrossRefGoogle Scholar
  35. Matsumoto S (1975) Cyto-ecological study of three types of Asplenium normale. J Nippon Fernist Club 2:338–340Google Scholar
  36. Matsumoto S, Nakaike T (1988) Chromosome numbers of some ferns in Kathmandu Nepal. In: Watanabe M, Malla SB (eds) Cryptogams of the Himalayas, vol 1. Department of Botany. National Science Museum, Tsukuba, pp 177–185Google Scholar
  37. Matsumoto S, Iwashina T, Kitajima J, Mitsuta S (2003) Evidence by flavonoid markers of four natural hybrids among Asplenium normale and related species (Aspleniaceae) in Japan. Biochem Syst Ecol 31:51–58CrossRefGoogle Scholar
  38. Mettenius G (1859) Über einige Farngattungen. VI. Asplenium. Abh Senckenberg Naturf Ges 3:110–254Google Scholar
  39. Murakami N, Nogami S, Watanabe M, Iwatsuki K (1999) Phylogeny of Aspleniaceae inferred from rbcL nucleotide sequences. Am Fern J 89:232–343CrossRefGoogle Scholar
  40. Nakaike T (1992) New flora of Japan, Pteridophyta, revised and enlarged. Shibundo, TokyoGoogle Scholar
  41. Ohlsen DJ, Perrie LR, Shepherd LD, Brownsey PJ, Bayly MJ (2014a) Phylogeny of the fern family Aspleniaceae in Australasia and the south-western Pacific. Aust Syst Bot 27:355–371CrossRefGoogle Scholar
  42. Ohlsen DJ, Perrie LR, Shepherd LD, Brownsey PJ, Bayly MJ (2014b) Investigation of species boundaries and relationships in the Asplenium paleaceum complex (Aspleniaceae) using AFLP fingerprinting and chloroplast and nuclear DNA sequences. Aust Syst Bot 27:378–394CrossRefGoogle Scholar
  43. Perrie LR, Brownsey PJ (2005) Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data. Am Fern J 95:1–21CrossRefGoogle Scholar
  44. Perrie LR, Shepherd LD, de Lange PJ, Brownsey PJ (2010) Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns. Mol Ecol 19:2916–2932CrossRefPubMedGoogle Scholar
  45. Pinter I, Bakker F, Barrett J, Cox C, Gibby M, Henderson S, Morgan-Richards M, Rumsey F, Russell S, Trewick S, Schneider H, Vogel J (2002) Phylogenetic and biosystematic relationships in four highly disjunct polyploid complexes in the subgenera. Ceterach and Phyllitis in Asplenium (Aspleniaceae). Organ Divers Evol 2:299–311CrossRefGoogle Scholar
  46. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  47. PPG1 (2016) A community based classification of ferns and lycophytes. J Syst Evol 54:563–603CrossRefGoogle Scholar
  48. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  49. Riedel A, Sagata K, Suhardjono YR, Tänzler R, Balke M (2013) Integrative taxonomy on the fast track-towards more sustainability in biodiversity research. Front Zool 10:15CrossRefPubMedPubMedCentralGoogle Scholar
  50. Roux JP (2009) Synopsis of the lycopodiophyta and pteridophyta of Africa, Madagascar and neighboring islands. South African National Biodiversity Institute, PretoriaGoogle Scholar
  51. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Croiser RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Ann Rev Entomol 55:421–438CrossRefGoogle Scholar
  52. Schneider H, Russell SJ, Cox CJ, Bakker F, Henderson S, Rumsey F, Barrett J, Gibby M, Vogel JC (2004) Chloroplast phylogeny of Asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Syst Bot 29:260–274CrossRefGoogle Scholar
  53. Schneider H, Ranker TA, Russell SJ, Cranfill R, Geiger JMO, Aguraiuja R, Wood KR, Grundmann M, Kloberdanz K, Vogel JC (2005) Origin of the endemic fern genus Diellia coincides with the renewal of Hawaiian terrestrial life in the Miocene. Proc R Soc Lond Ser B Biol Sci 272:455–460CrossRefGoogle Scholar
  54. Schneider H, Navarro-gomez A, Russell SJ, Ansell S, Grundmann M, Vogel J (2013) Exploring the utility of three nuclear regions to reconstruct reticulate evolution in the fern genus Asplenium. J Syst Evol 51:142–153CrossRefGoogle Scholar
  55. Schneider H, Liu HM, Chang YF, Ohlsen D, Perrie LR, Shepherd L, Kessler M, Karger D, Hennequin S, Marquardt J, Russell S, Ansell S, Lu NT, Kamau P, Regalado JL, Heinrichs L, Ebihara J, Smith A, Gibby AR M (2017) Neo-and Palaeopolyploidy contribute to the species diversity of Asplenium—the most species rich genus of ferns. J Syst Evol 55:353–364CrossRefGoogle Scholar
  56. Schuettpelz E, Grusz AL, Windham MD, Pryer KM (2008) The utility of nuclear gapCp in resolving polyploid fern origins. Syst Bot 33:621–629CrossRefGoogle Scholar
  57. Shepherd LD, Perrie LR, Brownsey PJ (2008) Low copy nuclear DNA sequences reveal a predominance of allopolyploids in a New Zealand Asplenium fern complex. Mol Phylogen Evol 49:240–248CrossRefGoogle Scholar
  58. Staden R, Beal KF, Bonfield JK (2000) The staden package, 1998. Methodes Mol Biol 132:115–130Google Scholar
  59. Suda J, Krahulcova A, Travnicekt P, Krahulex F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450CrossRefGoogle Scholar
  60. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  61. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  62. Véla E, Rebbas K, Martin R, de Premorel G, Tison JM (2015) Waiting for integrative taxonomy: Morphospecies as an operational proxy for the radiative and reticulate genus Ophrys L. (Orchidaceae)? Eur J Environ Sci 5:153–157CrossRefGoogle Scholar
  63. Vogel JC, Russell SJ, Rumsey FJ, Barrett JA, Gibby M (1998) Evidence for maternal transmission of chloroplast DNA in the genus Asplenium (Aspleniaceae, Pteridophyta). Bot Acta 111:247–249CrossRefGoogle Scholar
  64. Wagner WH (1954) Reticulate evolution in the Appalachian Aspleniums. Evolution 8:103–118CrossRefGoogle Scholar
  65. Wagner WH (1993) New species of Hawaiian pteridophytes. Contrib Univ Mich Herb 19:63–82Google Scholar
  66. Wagner WH, Chen KL (1965) Abortion of spores and sporangia as a tool in the detection of Dryopteris Hybrids. Am Fern J 55:9–29CrossRefGoogle Scholar
  67. Wang ZR (1988) A preliminary report on the cytology of some species of Asplenium from China. In: Shing K-H, Kramer KU (eds) Proceedings of the international symposium on systematic pteridology. China Science and Technology Press, BeijingGoogle Scholar
  68. Weng RF, Qiu SP (1988) Chromosome counts of some ferns from Zhejiang. Investig Stud Nat 8:43–52Google Scholar
  69. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851CrossRefPubMedGoogle Scholar
  70. Wood TE, Takebayashi N, Barker M, Mayrose I, Greenspoon P, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:1385–13879CrossRefGoogle Scholar
  71. Wu SH (1989) Materials of Chinese Aspleniaceae (I). Bull Bot Res 2:79–95Google Scholar
  72. Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinform 4:1–6CrossRefGoogle Scholar
  73. Zhu WM (1992) Taxonomic notes on some pteridophytes from Yunnan (mainly Dulongjiang and neighbouring regions). Acta Bot Yunnan 5:34–58Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yanfen Chang
    • 1
  • Atsushi Ebihara
    • 2
  • Shugang Lu
    • 3
  • Hongmei Liu
    • 4
  • Harald Schneider
    • 1
    • 5
  1. 1.Center for Integrative Conservation, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  2. 2.Department of BotanyNational Museum of Nature and ScienceTsukubaJapan
  3. 3.Institute of Ecology and GeobotanyYunnan UniversityKunmingChina
  4. 4.Gardening and Horticulture Department, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglunChina
  5. 5.Department of Life SciencesNatural History MuseumLondonUK

Personalised recommendations