Journal of Plant Research

, Volume 131, Issue 4, pp 681–692 | Cite as

Regulation of asymmetric polar auxin transport by PsPIN1 in endodermal tissues of etiolated Pisum sativum epicotyls: focus on immunohistochemical analyses

  • Motoshi Kamada
  • Kensuke Miyamoto
  • Mariko Oka
  • Junichi Ueda
  • Akira Higashibata
Regular Paper


This manuscript reports the production of specific polyclonal antibodies for PsPIN1, a putative auxin efflux carrier in Alaska pea (Pisum sativum L.) plants, and the cellular immunolocalization of PsPIN1. When pea seeds were set with the seed axis horizontal to the upper surface of a rockwool block, and allowed to germinate and grow for 3 days in the dark, the epicotyl grew upward. On the other hand, the application of 2,3,5-triiodobenzoic acid (TIBA) inhibited graviresponse. In the subapical epicotyl regions, PsPIN1 has been found to localize in the basal side of the plasma membrane of cells in endodermal tissues. Asymmetric PsPIN1 localization between the proximal and distal sides of the epicotyl was observed, the total amounts of PsPIN1 being more abundant in the proximal side. The asymmetric PsPIN1 distribution between the proximal and distal sides of the epicotyl was well correlated with unequal polar auxin transport as well as asymmetric accumulation of mRNA of PsPIN1 (Ueda et al. in Biol Sci Space 26:32–41, 2012; Ueda et al. in Plant Biol 16(suppl 1):43–49, 2014). In the proximal side of an apical hook, PsPIN1 localized in the basal side of the plasma membrane of cells in endodermal tissues, whereas in the distal side, the abundant distribution of PsPIN1 localized in the basal-lower (endodermal) side of the basal plasma membrane, suggesting possible lateral auxin movement from the distal side to the proximal side in this region. The application of TIBA significantly reduced the amount of PsPIN1 in the proximal side of epicotyls, but little in the distal side. These results suggest that unequal auxin transport in epicotyls during the early growth stage of etiolated pea seedlings is derived from asymmetric PsPIN1 localization in the apical hook and subapical region of epicotyls, and that asymmetric transport between the proximal and distal sides of epicotyls is required for the graviresponse of epicotyls.


Auxin efflux Epicotyl Immunohistochemistry Polar auxin transport PsPIN1 localization Pisum sativum 


  1. Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai F, DeMason (2006) Hormone interactions and regulation of Unifoliata. PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips. Plant Cell Physiol 47:935–948. CrossRefPubMedGoogle Scholar
  3. Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, Titapiwatanakun B, Makam SN, Bouchard R, Geisler M, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions of PIN and PGP auxin transport mechanisms. Biochem Soc Trans 35:137–141. CrossRefPubMedGoogle Scholar
  4. Benjamins R, Malenica N, Luschnig C (2005) Regulating the regulator: the control of auxin transport. Bioessays 27:1246–1255. CrossRefPubMedGoogle Scholar
  5. Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local pattering. Curr Opin Plant Biol 4:57–62. CrossRefPubMedGoogle Scholar
  6. Boutté Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119:1255–1265. CrossRefPubMedGoogle Scholar
  7. Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chawla R, DeMason DA (2004) Molecular expression of PsPIN1, a putative auxin efflux carrier gene from pea (Pisum sativum L.). Plant Growth Regul 44:1–14CrossRefGoogle Scholar
  9. DeMason DA, Chawla R (2009) Raising anti-PINl polyclonal antibodies for pea. Pisum Genet 41:7–12Google Scholar
  10. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrásek J, Seifertová D, Tejos R, Meisel LA, Zazímalová E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 105:4489–4494. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Friml J, Palme K (2002) Polar auxin transport—old question and new concepts? Plant Mol Biol 49:273–282. CrossRefPubMedGoogle Scholar
  12. Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809. CrossRefPubMedGoogle Scholar
  13. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426:147–153. CrossRefPubMedGoogle Scholar
  14. Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14:425–430. CrossRefPubMedGoogle Scholar
  15. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230. CrossRefPubMedGoogle Scholar
  16. Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428. CrossRefPubMedGoogle Scholar
  17. Hoshino T, Hitotsubashi R, Miyamoto K, Tanimoto E, Ueda J (2005) Isolation of PsPIN2 and PsAUX1 from etiolated pea epicotyls and their expression on a three-dimensional clinostat. Adv Space Res 36:1284–1294. CrossRefGoogle Scholar
  18. Hoshino T, Miyamoto K, Ueda J (2006) Requirement for the gravity-controlled transport of auxin for a negative gravitropic response of epicotyls in the early growth stage of etiolated pea seedlings. Plant Cell Physiol 47:1496–1508. CrossRefPubMedGoogle Scholar
  19. Hoshino T, Miyamoto K, Ueda J (2007) Gravity-controlled asymmetrical transport of auxin regulates a gravitropic response in the early growth stage of etiolated pea (Pisum sativum) epicotyls: studies using simulated microgravity conditions on a three-dimensional clinostat and using an agravitropic mutant, ageotropum. J Plant Res 120:619–628. CrossRefPubMedGoogle Scholar
  20. Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG (2010) Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285:23307–23315. CrossRefGoogle Scholar
  21. Kojo KH, Yasuhara H, Hasezawa S (2014) Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning. Plant Signal Behav 9:e29579. CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11:382–386. CrossRefPubMedGoogle Scholar
  23. Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108. PubMedPubMedCentralCrossRefGoogle Scholar
  24. Miyamoto K, Hoshino T, Yamashita M, Ueda J (2005) Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport. Physiol Plant 123:467–474. CrossRefPubMedGoogle Scholar
  25. Miyamoto K, Uheda E, Oka M, Ueda J (2011) Auxin polar transport and automorphosis in plants. Biol Sci Space 25:57–68. CrossRefGoogle Scholar
  26. Miyamoto K, Yamasaki T, Uheda E, Ueda J (2014) Analysis of apical hook formation in Alaska pea with a 3-D clinostat and agravitropic mutant ageotropum. Front Plant Sci 5:137. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morohashi K, Okamoto M, Yamazaki C, Fujii N, Miyazawa Y, Kamada M, Kasahara H, Osada I, Shimazu T, Fusejima Y, Higashibata A, Yamazaki T, Ishioka N, Kobayashi A, Takahashi H (2017) Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. New Phytol 215:1476–1489. CrossRefPubMedGoogle Scholar
  28. Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14:293–299. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nishimura T, Nakano H, Hayashi K, Niwa C, Koshiba T (2009) Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways. Plant Cell Physiol 50:1874–1885. CrossRefPubMedGoogle Scholar
  30. Oka M, Miyamoto K, Okada K, Ueda J (1999) Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolase (iaaH) gene. Plant Cell Physiol 40:231–237. CrossRefPubMedGoogle Scholar
  31. Okada K, Shimura Y (1994) Genetic analyses of signalling in flower development using Arabidopsis. Plant Mol Biol 26:1357–1377. CrossRefPubMedGoogle Scholar
  32. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of auxin polar transport system in early stage of Arabidopsis floral bud formation. Plant Cell 3:677–684. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Petrásek J, Elčkner M, Morris DA, Zazímalová E (2002) Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta 216:302–308. CrossRefPubMedGoogle Scholar
  34. Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5:325–332. CrossRefPubMedGoogle Scholar
  35. Tanaka H, Kitakura S, Rakusova H, Uemura T, Feraru MI, De Ricke R, Robert S, Kakimoto T, Friml J (2013) Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana. PLOS Genet 9:e1003540. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ueda J, Miyamoto K, Yuda T, Hoshino T, Fujii S, Mukai C, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K (1999) Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment. J Plant Res 112:487–492. CrossRefPubMedGoogle Scholar
  37. Ueda J, Miyamoto K, Uheda E, Oka M (2011) Auxin transport and graviresponse in plants: relevance to ABC proteins. Biol Sci Space 25:69–75. CrossRefGoogle Scholar
  38. Ueda J, Tada T, Hoshino T, Miyamoto K, Uheda E, Oka M (2012) Isolation of PsPINs and PsAUX1 cDNAs encoding putative auxin efflux and influx carriers and/or facilitators, respectively from etiolated epicotyls of an agravitropic pea (Pisum sativum L.) mutant, ageotropum. Biol Sci Space 26:32–41. CrossRefGoogle Scholar
  39. Ueda J, Miyamoto K, Uheda E, Oka M, Yano S, Higashibata A, Ishioka N (2014) Close relationships between polar auxin transport and graviresponse in plants. Plant Biol 16(suppl.1):43–49. CrossRefPubMedGoogle Scholar
  40. Ueda J, Saniewski M, Miyamoto K (2016) Chap. 8, Auxins, one major plant hormone, in soil. In: Szajdak LW (ed) Bioactive compounds in agricultural soils. Springer, Cham, pp 175–206. CrossRefGoogle Scholar
  41. Watanabe C, Fujii N, Yanai K, Hotta T, Kim DH, Kamada M, Saito Y, Nishimura T, Koshiba T, Miyazawa Y, Kim KM, Takahashi H (2012) Gravistimulation changes the accumulation pattern of CsPIN1 auxin efflux facilitator in endodermis of the transition zone in cucumber seedlings. Plant Physiol 158:239–251. CrossRefPubMedGoogle Scholar
  42. Went FW, Thimann KV (1937) Phytohormones. MacMillan, New YorkGoogle Scholar
  43. Yamazaki C, Fujii N, Miyazawa Y, Kamada M, Kasahara H, Osada I, Shimazu T, Fusejima Y, Higashibata A, Yamazaki T, Ishioka N, Takahashi H (2016) The gravity-induced re-localization of auxin efflux carrier CsPIN1 in cucumber seedlings: spaceflight experiments for immunohistochemical microscopy. NPJ Microgravity 2:16030. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yoneyama M, Kitayama T, Taniura H, Yoneda Y (2003) Immersion fixation with Carnoy solution for conventional immunohistochemical detection of particular N-methyl-d-aspartate receptor subunits in murine hippocampus. J Neurosci Res 73:416–426. CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Future Development DivisionAdvanced Engineering Services Co., Ltd.TsukubaJapan
  2. 2.Faculty of Liberal Arts and SciencesOsaka Prefecture UniversitySakaiJapan
  3. 3.Faculty of AgricultureTottori UniversityTottoriJapan
  4. 4.Graduate School of ScienceOsaka Prefecture UniversitySakaiJapan
  5. 5.Kibo Utilization Center, Human Spaceflight Technology DirectorateJapan Aerospace Exploration AgencyTsukubaJapan

Personalised recommendations