Journal of Plant Research

, Volume 131, Issue 3, pp 429–441 | Cite as

Floral meristem size and organ number correlation in Eucryphia (Cunoniaceae)

  • Kester Bull-HereñuEmail author
  • Louis Ronse de Craene
  • Fernanda Pérez
JPR Symposium Floral development –Re-evaluation of its importance–


We present a comparative flower ontogenetic study in five species of the genus Eucryphia with the aim of testing whether differences in the organ number observed can be explained by changes in the meristematic size of floral meristem and floral organs. Species native to Oceania, viz. E. milliganii, E. lucida and E. moorei, have the smallest gynoecia with ca. 6 carpels, while the Chilean E. glutinosa and E. cordifolia present more than ten carpels. E. milliganii has the smallest flower with the lowest stamen number (ca. 50), while the other species produce around 200 stamens and more. Standardized measurements of meristematic sectors were taken in 49 developing flowers that were classified into three well-defined ontogenetic stages. Sizes of meristems varied significantly among species within each developmental stage as revealed by ANOVA analyses. Significant regressions between organ number and corresponding meristem size were consistent with the premise that a larger meristem size prior to organ initiation could be determining for a higher organ number. Flower organogenesis in Eucryphia also involves relevant meristem expansion while the organs are initiated, which results in a particular androecium patterning with a chaotic stamen arrangement. Meristem expansion also appears to be slower but more extensive in species with larger initial meristematic size, suggesting that flower phenotype can be determined in ontogeny by this heterochronic interplay of space and time.


Flower development Androecium Polyandry Polycarpellate gynoecium Meristem size Meristem expansion Cunoniaceae 



We acknowledge AI for providing the collection and photography of E. moorei. The present work was presented at the JPR International Symposium organized by The Japanese Society of Plant Morphology and Fundación Flores at the 80th Annual Meeting of Botanical Society of Japan in September 2016 in Okinawa. We acknowledge JPR for covering the expenses for attending to this conference. This work has been funded by Fondecyt-Conicyt grant projects 11150847 and 3130417. We acknowledge Royal Botanic Garden Edinburgh (RBGE) for providing suitable material of Eucryphia and Frieda Christie for technical assistance with the SEM. RBGE is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services Division.

Supplementary material

10265_2018_1030_MOESM1_ESM.pdf (188 kb)
Supplementary material 1 (PDF 188 KB)


  1. Abbott RJ, Schmitt J (1985) Effect of environment on percentage female ray florets per capitulum and outcrossing potential in a self-compatible composite (Senecio vulgaris L. var hibernicus Syme). New Phytol 101:219–229CrossRefGoogle Scholar
  2. Arroyo MTK, Pacheco DA, Aguilera P (2013) Floral allocation at different altitudes in highly autogamous alpine Chaetanthera euphrasioides (Asteraceae) in the central Chilean Andes. Alp Botany 123:7–12CrossRefGoogle Scholar
  3. Barabé D, Lacroix C (2008) Developmental morphology of the flower of Anaphyllopsis americana and its relevance to our understanding of basal Araceae. Botany 86:1467–1473CrossRefGoogle Scholar
  4. Battjes J, Bachmann K (1994) Phenotypic plasticity of capitulum morphogenesis in Microseris pygmaea (Asteracea: Lactuceae). Ann Bot 73:299–305CrossRefGoogle Scholar
  5. Baush J (1938) A revision of the Eucryphiaceae. Bull Misc Inform (Royal Gardens, Kew) 1938:318–349Google Scholar
  6. Bull-Hereñu K, Arroyo MTK (2009) Phenological and morphological differentiation in annual Chaetanthera moenchioides (Asteraceae) over an aridity gradient. Plant Syst Evol 278:159–167CrossRefGoogle Scholar
  7. Bull-Hereñu K, Ronse de Craene L, Pérez F (2016) Flower meristematic size correlates with heterostylous morphs in two Chilean Oxalis (Oxalidaceae) species. Flora 221:14–21CrossRefGoogle Scholar
  8. Charlton WA (1991) Studies in the Alismataceae. IX. Development of the flower in Ranalisma humile. Can J Bot 69:2790–2796CrossRefGoogle Scholar
  9. Charlton WA, Posluszny U (1991) Meristic variation in Potamogeton flowers. Bot J Linn Soc 106:265–293CrossRefGoogle Scholar
  10. Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Devel 119:397–418Google Scholar
  11. Dickison WC (1978) Comparative anatomy of Eucryphiaceae. Am J Bot 65:722–735CrossRefGoogle Scholar
  12. Donoso C (1987) Variación natural en especies Nothofagus en Chile. Bosque 8:85–97CrossRefGoogle Scholar
  13. Doust AN, Kellogg EA (2002) Inflorescence diversification in the panicoid bristle grass clade (Paniceae: Poaceae): evidence from molecular phylogenies and developmental morphology. Am J Bot 89:1203–1222CrossRefPubMedGoogle Scholar
  14. Dress WJ (1956) A review of the genus Eucryphia. Baileya 4:116–127Google Scholar
  15. Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438Google Scholar
  16. Endress PK (2014) Multicarpellate gynoecia in angiosperms: occurrence, development, organization and architectural constraints. Bot J Linn Soc 174:1–43CrossRefGoogle Scholar
  17. Forster PI, Hyland BPM (1997) Two new species of Eucryphia Cav. (Cunoniaceae) from Queensland. Austrobaileya 4:589–596Google Scholar
  18. Harris EM, Tucker SC, Urbatsch L (1991) Floral Initiation and Early Development in Erigeron philadelphicus (Asteraceae). Am J Bot 78:108–121CrossRefGoogle Scholar
  19. Jerominek M, Bull-Hereñu K, Arndt M, Classen-Bockhoff R (2014) Live imaging of developmental processes in a living meristem of Davidia involucrata (Nyssaceae). Front Plant Sci 5:613. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Luo Y, Bian F, Luo Y (2012) Different patterns of floral ontogeny in dimorphic flowers of Pseudostellaria heterophylla (Caryophyllaceae). Int J Plant Sci 173:150–160CrossRefGoogle Scholar
  21. Maad J, Armbuster WS, Fenster CB (2013) Floral size variation in Campanula rotundifolia (Campanulaceae) along altitudinal gradients: patterns and possible selective mechanisms. Nordic J Bot 31:361–371CrossRefGoogle Scholar
  22. Mayers AM, Lord EM (1984) Comparative flower development in the cleistogamous species Viola odorata. III. A, histological study. Bot Gaz 145:83–91CrossRefGoogle Scholar
  23. Neuffer B, Paetsch M (2013) Flower morphology and pollen germination in the genus Capsella (Brassicaceae). Flora 208:626–640CrossRefGoogle Scholar
  24. Oraei M, Gohari G, Esmaillou Z, Naghiloo S (2013) Comparative ontogeny of perfect and pistillate florets in Senecio vernalis (Asteraceae). Flora 208:285–292CrossRefGoogle Scholar
  25. Ronse De Craene L (2018) Understanding the role of floral development in the evolution of angiosperm flowers: a clarification from different perspectives. J Plant Res. CrossRefGoogle Scholar
  26. Ronse De Craene L (2016) Meristic changes in flowering plants: How flowers play with numbers. Flora 221:22–37CrossRefGoogle Scholar
  27. Ronse De Craene L (2017) Floral development of the endangered genus Medusagyne (Medusagynaceae-Malpighiales): spatial constraints of stamen and carpel increase. Int J Plant Sci 178:639–649CrossRefGoogle Scholar
  28. Suárez LH, Pérez F, Armesto JJ (2011) Strong phenotypic variation in floral design and display traits of an annual tarweed in relation to small-scale topographic heterogeneity in semiarid Chile. Int J Plant Sci 172:1012–1025CrossRefGoogle Scholar
  29. Zhang Q, Zhao C, Dong X, Ma X, Hou Z, Li Y (2015) Relationship between flower size and leaf size, number of Stellera chamaejasme population of degraded alpine grassland along an altitude gradient. Chin J Ecol 34:40–46Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kester Bull-Hereñu
    • 1
    • 2
    Email author
  • Louis Ronse de Craene
    • 3
  • Fernanda Pérez
    • 4
  1. 1.Sección BotánicaMuseo Nacional de Historia NaturalSantiagoChile
  2. 2.Fundación FloresSantiagoChile
  3. 3.Royal Botanic Garden EdinburghEdinburghUK
  4. 4.Departamento de EcologíaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations