Journal of Plant Research

, Volume 131, Issue 3, pp 395–407 | Cite as

Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in monocot flowers

  • Akitoshi Iwamoto
  • Ayaka Nakamura
  • Shinichi Kurihara
  • Ayumi Otani
  • Louis P. Ronse De Craene
JPR Symposium Floral development –Re-evaluation of its importance–

Abstract

Monocots are remarkably homogeneous in sharing a common trimerous pentacyclic floral Bauplan. A major factor affecting monocot evolution is the unique origin of the clade from basal angiosperms. The origin of the floral Bauplan of monocots remains controversial, as no immediate sister groups with similar structure can be identified among basal angiosperms, and there are several possibilities for an ancestral floral structure, including more complex flowers with higher stamen and carpel numbers, or strongly reduced flowers. Additionally, a stable Bauplan is only established beyond the divergence of Alismatales. Here, we observed the floral development of five members of the three ‘petaloid’ Alismatales families Butomaceae, Hydrocharitaceae, and Alismataceae. Outer stamen pairs can be recognized in mature flowers of Alismataceae and Butomaceae. Paired stamens always arise independently, and are either shifted opposite the sepals or close to the petals. The position of stamen pairs is related to the early development of the petals. In Butomaceae, the perianth is not differentiated and the development of the inner tepals is not delayed; the larger inner tepals (petals) only permit the initiation of stamens in antesepalous pairs. Alismataceae has delayed petals and the stamens are shifted close to the petals, leading to an association of stamen pairs with petals in so-called stamen–petal complexes. In the studied Hydrocharitaceae species, which have the monocot floral Bauplan, paired stamens are replaced by larger single stamens and the petals are not delayed. These results indicate that the origin of the floral Bauplan, at least in petaloid Alismatales, is closely linked to the position of stamen pairs and the rate of petal development. Although the petaloid Alismatales are not immediately at the base of monocot divergence, the floral evolution inferred from the results should be a key to elucidate the origin of the floral Bauplan of monocots.

Keywords

Petaloid Alismatales Floral development Stamen pairs Monocot flower Trimerous Bauplan 

Notes

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant number 16K18576 to AI. The authors thank Dr. Paula Rudall, Royal Botanic gardens, Kew, Mr. Ueda, Mizunomori Water Botanical Garden, and the Royal Botanic Garden Edinburgh for support in collecting materials. Thanks of the authors also go to Robbie Lewis, MSc, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

References

  1. APG (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
  2. Burger WC (1977) The Piperales and the monocots. Alternate hypotheses for the origin of monocotyledonous flowers. Bot Rev 43:345–393CrossRefGoogle Scholar
  3. Buzgo M, Endress P (2000) Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. Int J Plant Sci 161:23–41CrossRefPubMedGoogle Scholar
  4. Buzgo M, Soltis PS, Soltis DE (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947CrossRefGoogle Scholar
  5. Buzgo M, Soltis DE, Soltis PS et al (2006) Perianth development in the basal monoco Triglochin maritima (Juncaginaceae). Aliso J Syst Evol Bot 22:107–125Google Scholar
  6. Charlton W (1991) Studies in the Alismataceae. IX. Development of the flower in Ranalisma humile. Can J Bot 69:2790–2796CrossRefGoogle Scholar
  7. Charlton W (1999a) Studies in the Alismataceae. X. Floral organogenesis in Luronium natans (L.) Raf. Can J Bot 77:1560–1568CrossRefGoogle Scholar
  8. Charlton W (1999b) Studies in the Alismataceae. XI. Development of the inflorescence and flowers of Wiesneria triandra (Dalzell) Micheli. Can J Bot 77:1569–1579CrossRefGoogle Scholar
  9. Charlton W (2004) Studies in the Alismataceae. XII. Floral organogenesis in Damasonium alisma and Baldellia ranunculoides, and comparisons with Butomus umbellatus. Can J Bot 82:528–539CrossRefGoogle Scholar
  10. Chase MW, Fay MF, Devey DS et al (2006) Multigene analyses of monocot relationships. Aliso J Syst Evol Bot 22:63–75Google Scholar
  11. Chen D, Chen J, Wang Y, Wang Q (2002) Floral organogenesis of Caldesia grandis Samuel. (Alismataceae). Acta Phytotaxon Sin 41:229–234Google Scholar
  12. Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Structure, evolution, and taxonomy. Springer, BerlinCrossRefGoogle Scholar
  13. Eichler AW (1875) Blüthendiagramme I. Wilhelm Engelmann, LeipzigGoogle Scholar
  14. Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438Google Scholar
  15. Endress PK (1995) Major evolutionary traits of monocot flowers. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 43–79Google Scholar
  16. Endress PK (1996) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  17. Erbar C, Leins P (1981) Zur Spirale in Magnolien-Bluten. Beitrage Zur Biol PflanzGoogle Scholar
  18. Erbar C, Leins P (1983) Zur Sequenz von Blütenorganen bei einigen Magnoliiden. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 103:433–449Google Scholar
  19. Erbar C, Leins P (1994) Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. In: Endress PK, Friis EM (eds) Early evolution of flowers. Springer, Vienna, pp 193–208CrossRefGoogle Scholar
  20. Graham SW, Zgurski JM, McPherson MA et al (2006) Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. Aliso J Syst Evol Bot 22:3–21Google Scholar
  21. Hertweck KL, Kinney MS, Stuart SA et al (2015) Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Bot J Linn Soc 178:375–393CrossRefGoogle Scholar
  22. Iles WJ, Smith SY, Graham SW (2013) A well-supported phylogenetic framework for the monocot order Alismatales reveals multiple losses of the plastid NADH dehydrogenase complex and a strong long-branch effect. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, pp 1–28Google Scholar
  23. Kaul RB (1967a) Development and vasculature of the flowers of Lophotocarpus calycinus and Sagittaria latifolia (Alismaceae). Am J Bot 54:914–920CrossRefGoogle Scholar
  24. Kaul RB (1967b) Ontogeny and anatomy of the flower of Limnocharis flava (Butomaceae). Am J Bot 54:1223–1230CrossRefGoogle Scholar
  25. Kaul RB (1968a) Floral development and vasculature in Hydroceleis nymphoides (Butomaceae). Am J Bot 55:236–242CrossRefGoogle Scholar
  26. Kaul RB (1968b) Floral morphology and phylogeny in the Hydrocharitaceae. Phytomorphology 18:13–35Google Scholar
  27. Kaul RB (1969) Morphology and development of the flowers of Boottia cordata, Ottelia alismoides, and their synthetic hybrid (Hydrocharitaceae). Am J Bot 951–959Google Scholar
  28. Leins P, Erbar C (1994) Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. II. The relationships between flowers of Magnoliidae, Dilleniidae, and Caryophyllidae. In: Endress PK, Friis EM (eds) Early evolution of flowers. Springer, Wien, pp 209–218CrossRefGoogle Scholar
  29. Leins P, Stadler P (1973) Entwicklungsgeschichtliche Untersuchungen am Androeceum der Alismatales. Österr Bot Z 121:51–63CrossRefGoogle Scholar
  30. Liu K, Lei I, Hu G (2002) Developmental study on the inflorescence and flower of Caldesia grandis Samuel (Alismataceae). Bot J Linn Soc 140:39–47CrossRefGoogle Scholar
  31. Nunes ELP, de Lima MC, Moço MCC, Coan AI (2012) Floral development in Potamogeton (Potamogetonaceae, Alismatales) with emphasis on gynoecial features. Aquat Bot 100:56–61CrossRefGoogle Scholar
  32. Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S, Ross TG (2016) Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?) Cladistics 32:141–159CrossRefGoogle Scholar
  33. Posluszny U (1983) Reevaluation of certain key relationships in the Alismatidae: floral organogenesis of Scheuchzeria palustris (Scheuchzeriaceae). Am J Bot 70:925–933CrossRefGoogle Scholar
  34. Posluszny U, Charlton WA (1993) Evolution of the Helobial flower. Aquat Bot 44:303–324CrossRefGoogle Scholar
  35. Remizowa M, Sokoloff DD (2003) Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s.str. Bot Jahrb Syst 124:255–271CrossRefGoogle Scholar
  36. Remizowa MV, Sokoloff DD, Kondo K (2010) Early flower and inflorescence development in Dioscorea tokoro (Dioscoreales): shoot chirality, handedness of cincinni and common tepal–stamen primordia. Wulfenia 17:77–97Google Scholar
  37. Remizowa MV, Kuznetsov AN, Kuznetsova SP, Rudall PJ, Nuraliev MS, Sokoloff DD (2012) Flower development and vasculature in Xyris grandis (Xyridaceae, Poales); a case study for examining petal diversity in monocot flowers with a double perianth. Bot J Linn Soc 170:93–111CrossRefGoogle Scholar
  38. Richards JH, Barrett SCH (1984) The developmental basis of tristyly in Eichhornia paniculata (Pontederiaceae). Am J Bot 71:1347–1363CrossRefGoogle Scholar
  39. Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164:225–235CrossRefGoogle Scholar
  40. Ronse De Craene LP (2010) Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. Ronse De Craene LP (2018) Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. J Plant Res.  https://doi.org/10.1007/s10265-018-1021-1 Google Scholar
  42. Ronse De Craene LP, Smets EF (1993) Dédoublement revisited: towards a renewed interpretation of the androecium of the Magnoliophytina. Bot J Linn Soc 113:103–124CrossRefGoogle Scholar
  43. Ronse De Craene LP, Smets E (1994) Merosity in flowers: definition, origin, and taxonomic significance. Plant Syst Evol 191:83–104CrossRefGoogle Scholar
  44. Ronse De Craene LP, Smets EF (1995) The androecium of monocotyledons. Monocotyledons Syst Evol 1:243–254Google Scholar
  45. Ronse De Craene LP, Smets E (1996) The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Repert 107:1–17Google Scholar
  46. Ross TG, Barrett CF, Gomez MS, Lam VKY, Henriquez CL, Les DH, Davis JI, Cuenca A, Petersen G, Seberg O, Thadeo M, Givnish TJ, Conran J, Stevenson DW, Graham SW (2016) Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32:160–178CrossRefGoogle Scholar
  47. Salisbury EJ (1926) The geographical distribution of plants in relation to climatic factors. Geogr J 67:312–335CrossRefGoogle Scholar
  48. Sattler R, Singh V (1973) Floral development of Hydrocleis nymphoides. Can J Bot 51:2455–2458CrossRefGoogle Scholar
  49. Sattler R, Singh V (1977) Floral organogenesis of Limnocharis flava. Can J Bot 55:1076–1086CrossRefGoogle Scholar
  50. Sattler R, Singh V (1978) Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot J Linn Soc 77:141–156CrossRefGoogle Scholar
  51. Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK et al (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047.  https://doi.org/10.1038/ncomms16047 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Scribailo RW, Posluszny U (1985) Floral development of Hydrocharis morsus-ranae (Hydrocharitaceae). Am J Bot 72:1578–1589CrossRefGoogle Scholar
  53. Singh V, Sattler R (1972) Floral development of Alisma triviale. Can J Bot 50:619–627CrossRefGoogle Scholar
  54. Singh V, Sattler R (1973) Nonspiral androecium and gynoecium of Sagittaria latifolia. Can J Bot 51:1093–1095CrossRefGoogle Scholar
  55. Singh V, Sattler R (1974) Floral development of Butomus umbellatus. Can J Bot 52:223–230CrossRefGoogle Scholar
  56. Singh V, Sattler R (1977) Development of the inflorescence and flower of Sagittaria cuneata. Can J Bot 55:1087–1105CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyTokyo Gakugei UniversityTokyoJapan
  2. 2.Royal Botanic Garden EdinburghEdinburghUK

Personalised recommendations