Skip to main content

Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective

Abstract

Flower morphology results from the interaction of an established genetic program, the influence of external forces induced by pollination systems, and physical forces acting before, during and after initiation. Floral ontogeny, as the process of development from a meristem to a fully developed flower, can be approached either from a historical perspective, as a “recapitulation of the phylogeny” mainly explained as a process of genetic mutations through time, or from a physico-dynamic perspective, where time, spatial pressures, and growth processes are determining factors in creating the floral morphospace. The first (historical) perspective clarifies how flower morphology is the result of development over time, where evolutionary changes are only possible using building blocks that are available at a certain stage in the developmental history. Flowers are regulated by genetically determined constraints and development clarifies specific transitions between different floral morphs. These constraints are the result of inherent mutations or are induced by the interaction of flowers with pollinators. The second (physico-dynamic) perspective explains how changes in the physical environment of apical meristems create shifts in ontogeny and this is reflected in the morphospace of flowers. Changes in morphology are mainly induced by shifts in space, caused by the time of initiation (heterochrony), pressure of organs, and alterations of the size of the floral meristem, and these operate independently or in parallel with genetic factors. A number of examples demonstrate this interaction and its importance in the establishment of different floral forms. Both perspectives are complementary and should be considered in the understanding of factors regulating floral development. It is suggested that floral evolution is the result of alternating bursts of physical constraints and genetic stabilization processes following each other in succession. Future research needs to combine these different perspectives in understanding the evolution of floral systems and their diversification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ajani Y, Bull-Hereñu K, Classen-Bockhoff R (2016) Patterns of flower development in Apiaceae–Apioideae. Flora 221:38–45

    Article  Google Scholar 

  • Alvarez-Buylla ER, Azpeitia E, Barrio R, Benítez M, Padilla-Longoria P (2010) From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Seminars Cell Dev Biol 21:108–117

    CAS  Article  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Arthur W (2000) The origin of animal body plans: a study in evolutionary developmental biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Basso-Alves JP, Goldenberg R, Teixeira SP (2017) The ontogenetic bases for variation in ovary position in Melastomatacae. Am J Bot 104:1142–1156

    Article  Google Scholar 

  • Bateman RM, DiMichele WA (2002) Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Systematics Association Special Volume Series 65. Taylor and Francis, London, pp 109–159

    Google Scholar 

  • Beer SS, Beer AS, Sokoloff DD (2010) Flower and inflorecence development in Salicornia (Chenopodiaceae). Feddes Repert 121:229–247

    Article  Google Scholar 

  • Bello MA, Hawkins JA, Rudall PJ (2010) Floral ontogeny in Polygalaceae and its bearing on the homologies of keeled flowers in Fabales. Int J Plant Sci 171:482–498

    Article  Google Scholar 

  • Bowman JL, Smyth DR (1998) Patterns of petal and stamen reduction in Australian species of Lepidium L. (Brassicaceae). Int J Plant Sci 159:65–74

    Article  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Box MS, Glover BJ (2010) A plant developmentalist’s guide to paedomorphosis: reintroducing a classic concept to a new generation. Trends Plant Sci 15:241–246

    CAS  PubMed  Article  Google Scholar 

  • Brady MS, Stein W, Crane PR (1997) Exploring patterns in floral morphology: mathematical modeling of floral development using an inhibitory morphogen and meristematic growth parameters. Am J Bot Suppl 84:6–37

    Google Scholar 

  • Brockington SF, Roolse A, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170:627–643

    Article  Google Scholar 

  • Brockington SF, Dos Santos P, Glover B, Ronse De Craene LP (2013) Evolution of the androecium in Caryophyllales: insights from a paraphyletic Molluginaceae. Am J Bot 100:1757–1778

    PubMed  Article  Google Scholar 

  • Buckhari G, Zhang J, Stevens PF, Zhang W (2017) Evolution of the process underlying floral zygomorphy development in pentapetalous angiosperms. Am J Bot 104:1846–1856

    Article  Google Scholar 

  • Bull-Hereñu K, Ronse De Craene LP, Pérez F (2018) Floral meristem size and organ number correlation in Eucryphia (Cunoniaceae). J Plant Res. https://doi.org/10.1007/s10265-018-1030-0

    Article  PubMed  Google Scholar 

  • Buzgo M, Soltis DE, Soltis PS, Ma H (2004) Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci 9:163–174

    Article  CAS  Google Scholar 

  • Cao L, Liu J, Lin Q, Ronse De Craene LP (2018) The floral organogenesis of Koelreuteria bipinnata and its variety integrifoliola (Sapindaceae): evidence of floral constraints on the evolution of monosymmetry. Plant Syst Evol (in press)

  • Caris P (2013) Bloemontogenetische patronen in the Ericales sensu lato. Dissertation, Katholieke Universiteit Leuven, Belgium

  • Caris P, Smets EF (2004) A floral ontogenetic study on the sister group relationship between the genus Samolus (Primulaceae) and the Theophrastaceae. Am J Bot 91:627–643

    PubMed  Article  Google Scholar 

  • Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity: 20 years of ABCs. Seminars Cell Devel Biol 21:73–79

    CAS  Article  Google Scholar 

  • Chandler JW (2014) Patterns and polarity in floral meristem and floral organ initiation. Crit Rev Plant Sci 33:457–469

    CAS  Article  Google Scholar 

  • Charlton WA (1999) Studies in the Alismataceae XI. Development of the inflorescence and flowers of Wiesneria triandra (Dalzell) Micheli. Can J Bot 77:1569–1579

    Article  Google Scholar 

  • Charlton WA (2004) Studies in the Alistmataceae. XII. Floral organogenesis in Damasonium alisma and Baldellia ranunculoides, and comparisons with Butomus umbellatus. Can J Bot 82:528–539

    Article  Google Scholar 

  • Chartier M, Jabbour F, Gerber S, Mitteroecker P, Sauquet H, von Balthazar M, Staedler Y, Crane PR, Schoenenberger J (2014) The floral morphospace—a modern comparative approach to study angiosperm evolution. New Phytol. https://doi.org/10.1111/nph.12969

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinga J, Pérez F (2016) Ontogenetic integration in two species of Schizanthus (Solanaceae): a comparison with static integration patterns. Flora 221:75–81

    Article  Google Scholar 

  • Choob VV, Penin AA (2004) Structure of flower in Arabidopsis thaliana: spatial pattern formation. Russ J Devel Biol 35:224–227

    Article  Google Scholar 

  • Citerne H, Jabbour F, Nadot S, Damerval C (2010) The evolution of floral symmetry. In: Kader JC, Delseny M (eds) Advances in botanical research. Elsevier, London, pp 85–137

    Google Scholar 

  • Classen-Bockhoff R (1991) Anthodien, Pseudanthien und Infloreszenzblumen. Beitr Biol Pflanz 66:221–240

    Google Scholar 

  • Classen-Bockhoff R (2001) Plant morphology: the historic concepts of Wilhelm Troll, Walter Zimmermann and Agnes Arber. Ann Bot 88:1153–1172

    Article  Google Scholar 

  • Classen-Bockhoff R (2016) The shoot concept of the flower: still up to date? Flora 221:46–53

    Article  Google Scholar 

  • Classen-Bockhoff R, Bull-Hereñu K (2013) Towards an ontogenetic understanding of inflorescence diversity. Ann Bot 112:1523–1542

    PubMed  PubMed Central  Article  Google Scholar 

  • Classen-Bockhoff R, Meyer C (2016) Space matters: meristem expansion triggers corona formation in Passiflora. Ann Bot 117:277–290

    PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    CAS  PubMed  Article  Google Scholar 

  • De Barros TC, Pedersoli GD, Paulino JV, Teixeira SP (2017) In the interface of caesalpinioids and mimosoids: comparative floral development elucidates shared characters in Dimorphandra mollis and Pentaclethra macroloba (Leguminosae). Am J Bot 104:218–232

    PubMed  Article  CAS  Google Scholar 

  • Donoghue MJ, Ree RH, Baum DA (1998) Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci 3:311–317

    Article  Google Scholar 

  • Dos Santos P, Ronse De Craene LP (2016) Floral development of Lewisia (Montiaceae): investigating patterns of perianth and stamen diversity. Flora 221:4–13

    Article  Google Scholar 

  • Dos Santos P, Brockington S, Glover B, Ronse De Craene LP (2012) Micromorphological evidence for androecium origin of Claytonia (Montiaceae) petaloids. Modern Phytomorph 1:23–25

    Google Scholar 

  • Douady S, Couder Y (1996) Phyllotaxis as a dynamical self organizing process Part III: The simulation of the transient regimes of ontogeny. J Theor Biol 178:295–312

    Article  Google Scholar 

  • Doust AN (2001) The developmental basis of floral variation in Drimys winteri (Winteraceae). Int J Plant Sci 162:697–717

    Article  Google Scholar 

  • Doust AN (2002) Comparative floral ontogeny in Winteraceae. Ann Missouri Bot Gard 87:366–379

    Article  Google Scholar 

  • Doust AN, Drinnan AN (2004) Floral development and molecular phylogeny support the generic status of Tasmannia (Winteraceae). Am J Bot 91:321–331

    CAS  PubMed  Article  Google Scholar 

  • Doyle JA, Endress PK (2011) Tracing the early evolutionary diversification of the angiosperm flower. In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 88–119

    Chapter  Google Scholar 

  • Dumais J (2007) Can mechanics control pattern formation in plants? Curr opinion Plant Biol 10:58–62

    Article  Google Scholar 

  • Dumais J, Steele CR (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 19:7–18

    CAS  PubMed  Article  Google Scholar 

  • Eichler AW (1875–78). Blütendiagramme 1 and 2. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Einset JW (1987) Botany: the state of art. How development’s clock guides Evolution. Arnoldia 47:20–25

    Google Scholar 

  • Endress PK (1986) Floral structure, systematics, and phylogeny in trochodendrales. Ann Missouri Botl Gard 73:297

    Article  Google Scholar 

  • Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438

    Google Scholar 

  • Endress PK (1990) Patterns of floral construction in ontogeny and phylogeny. Biol J Linn Soc 39:153–175

    Article  Google Scholar 

  • Endress PK (1992) Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int J Plant Sci 153:S106–S122

    Article  Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Endress PK (1997) Evolutionary biology of flowers: prospects for the next century. In: Iwatsuki K, Raven PH (eds) Evolution and diversification of land plants. Springer, Tokyo, pp 99–119

    Chapter  Google Scholar 

  • Endress PK (1998) Antirrhinum and Asteridae—evolutionary changes of floral symmetry. Soc Exp Biol Symp Ser 51:133–140

    CAS  Google Scholar 

  • Endress PK (1999) Symmetry in flowers. Diversity and evolution. Int J Plant Sci 160(6 Suppl):S3–S23

    CAS  PubMed  Article  Google Scholar 

  • Endress PK (2003) What should a “complete” morphological phylogenetic anaylsis entail? In: Stuessy TF, Mayer V, Hörandl E (eds) Deep morphology: towards a renaissance of morphology in plant systematics. ARG Gantner, Liechtenstein, pp 131–164

    Google Scholar 

  • Endress PK (2005) The role of morphology in angiosperm evolutionary studies. Nova Acta Leopoldina NF 92:342:221–238

    Google Scholar 

  • Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Adv Bot Res 44:1–61

    Article  Google Scholar 

  • Endress PK (2008) The whole and the parts: relationships between floral architecture and floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. Ann Missouri Bot Gard 95:101–120

    Article  Google Scholar 

  • Endress PK (2010a) Flower structure and trends in evolution in eudicots and their major subclades. Ann Missouri Bot Gard 97:541–583

    Article  Google Scholar 

  • Endress PK (2010b) Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann Bot 106:687–695

    PubMed  PubMed Central  Article  Google Scholar 

  • Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396

    PubMed  Article  Google Scholar 

  • Endress PK (2014) Multicarpellate gynoecia in angiosperms: occurrence, development, organization and architectural constraints. Bot J Linn Soc 174:1–43

    Article  Google Scholar 

  • Endress PK (2016) Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. Ann Bot 117:749–767

    PubMed  Article  Google Scholar 

  • Endress PK, Armstrong JE (2011) Floral development and floral phyllotaxis in Anaxagorea (Annonaceae). Ann Bot 108:835–845

    PubMed  PubMed Central  Article  Google Scholar 

  • Endress PK, Doyle JA (2007) Floral phyllotaxis in basal angiosperms: development and evolution. Curr Opinion Plant Biol 10:52–57

    Article  Google Scholar 

  • Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org Div Evol 6:257–293

    Article  Google Scholar 

  • Endress PK, Matthews ML (2012) Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Syst Evol 298:257–276

    Article  Google Scholar 

  • Erbar C (1994) Contributions to the affinities of Adoxa from the viewpoint of floral development. Bot Jahrb Syst 116:259–282

    Google Scholar 

  • Erbar C (2007) Current opinions in flower development and the evo-devo approach in plant phylogeny. Plant Syst Evol 269:107–132

    Article  Google Scholar 

  • Erbar C, Leins P (1983) Zur sequenz von Blütenorganen bei einigen Magnoliiden. Bot Jahrb Syst 103:433–449

    Google Scholar 

  • Erbar C, Leins P (1994) Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst Evol suppl 8:193–208

    Google Scholar 

  • Erbar C, Leins P (1997) Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae. Int J Plant Sci 158(suppl. 6):S49–S64

    Article  Google Scholar 

  • Farrar J, Ronse De Craene LP (2013) To be or not to be a staminode: the floral development of Sauvagesia (ochnaceae) reveals different origins of presumed staminodes. In: Berntsen T, Alsvik K (eds) Flowers, morphology, evolutionary diversification and implications for the environment. Nova Science, New York, pp 89–103

    Google Scholar 

  • Friedman J (2011) Gone with the wind: understanding evolutionary transitions between wind and animal pollination in the angiosperms. New Phytol 191:911–913

    PubMed  Article  Google Scholar 

  • Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58

    Article  Google Scholar 

  • Ge L-P, Lu A-M, Gong C-R (2007) Ontogeny of the fertile flower in Platycrater arguta (Hydrangeaceae). Int J Plant Sci 168:835–844

    Article  Google Scholar 

  • Glover BJ, Airoldi CA, Brockington SF, Fernandez-Mazuecos M, Martinez-Perez C, Mellers G, Moyroud E, Taylor L (2015) How have advances in comparative floral development influenced our understanding of floral evolution? Int J Plant Sci 176:307–323

    Article  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feed- back loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534

    CAS  PubMed  Article  Google Scholar 

  • Green PB (1992) Pattern formation in shoots: a likely role for minimal energy configurations of the tunica. Int J Plant Sci 153:59–75

    Article  Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076

    CAS  PubMed  Article  Google Scholar 

  • Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527

    Article  Google Scholar 

  • Guimarães E, di Stasi LC, Maimoni-Rodella RCS (2008) Pollination biology of Jacaranda oxyphylla with an emphasis on staminode function. Ann Bot 102:699–711

    PubMed  PubMed Central  Article  Google Scholar 

  • Gustafsson MHG (2000) Floral morphology and relationships of Clusia gundlachii with a discussion of floral organ identity and diversity in the genus Clusia. Int J Plant Sci 161:43–53

    CAS  PubMed  Article  Google Scholar 

  • Hamant O, Heisler MG, Jönson H et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    CAS  PubMed  Article  Google Scholar 

  • Hamant O, Traas J, Boudaoud A (2010) Regulation of shape and patterning in plant development. Curr Opin Gen Dev 20:454–459

    CAS  Article  Google Scholar 

  • Hardy CR, Stevenson DW (2000) Floral organogenesis in some species of Tradescantia and Callisia (Commelinaceae). Int J Plant Sci 161:551–562

    Article  Google Scholar 

  • Harrison CJ, Moeller M, Cronk QCB (1999) Evolution and development of floral diversity in Streptocarpus and Saintpaulia. Ann Bot 84:49–60

    Article  Google Scholar 

  • Haston E, Ronse De Craene LP (2007) Inflorescence and floral development in Streptocarpus and Saintpaulia (Gesneriaceae) with particular reference to theimpact of bracteole suppression. Plant Syst Evol 265:13–25

    Article  Google Scholar 

  • Hayes V, Schneider EL, Carlquist S (2000) Floral development of Nelumbo nucifera Nelumbonaceae). Int J Plant Sci 161(6 Suppl.):S183–S191

    Article  Google Scholar 

  • Hernández LF, Green PB (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5:1725–1738

    PubMed  PubMed Central  Article  Google Scholar 

  • Hileman LC, Irish VF (2009) More is better: the uses of developmental genetic data to reconstruct perianth evolution. Am J Bot 6:83–95

    Article  Google Scholar 

  • Hintz M, Bartholmes C, Nutt P, Ziermann J, Hameister S, Neuffer B, Theissen G (2006) Catching a ‘hopeful monster’: sherpherd’s purse (Capsella bursa-pastoris) as a model system to study the evolution of flower development. J Exp Bot 57:3531–3542

    CAS  PubMed  Article  Google Scholar 

  • Hochwallner H, Weber A (2006) Flower development and anatomy of Clusia valerioi, a Central American species of Clusiaceae offering floral resin. Flora 201:407–418

    Article  Google Scholar 

  • Hodges SA, Arnold ML (1995) Spurring plant diversification: are floral nectar spurs a key innovation? Proc Roy Soc London B262:343–348

    Google Scholar 

  • Howarth DG, Martins T, Chimney E, Donoghue MJ (2011) Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Ann Bot 107:1521–1532

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hufford LD (1990) Androecial development and the problem of monophyly of Loasaceae. Can J Bot 68:402–419

    Article  Google Scholar 

  • Hufford LD (1995) Patterns of ontogenetic evolution in perianth diversification of Besseya (Scrophulariaceae). Am J Bot 82:655–680

    Article  Google Scholar 

  • Hufford LD (1997) The roles of ontogenetic evolution in the origins of floral homoplasies. Int J Plant Sci 158(6 Suppl):S65–S80

    Article  Google Scholar 

  • Hufford LD (1998) Early development of androecia in polystemonous Hydrangeaceae. Am J Bot 85:1057–1067

    CAS  PubMed  Article  Google Scholar 

  • Hufford LD (2001a) Ontogenetic sequences: homology, evolution, and the patterning of clade diversity. In: Zelditch ML (ed) Beyond heterochrony: the evolution of development. Wiley-Liss, Oxford

    Google Scholar 

  • Hufford LD (2001b) Ontogeny and morphology of the fertile flowers of Hydrangea and allied genera of tribe Hydrangeeae (Hydrangeaceae). Bot J Linn Soc 137:139–187

    Article  Google Scholar 

  • Hufford LD (2003) Homology and developmental transformation: models for the origins of the staminodes of Loasaceae subfamily Loasoideae. Int J Plant Sci 164(5 Suppl):S409–S439

    Article  Google Scholar 

  • Irish VF (2009) Evolution of petal identity. J Exp Biol 60:2517–2527

    CAS  Google Scholar 

  • Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr Opinion Gen Dev 15:454–460

    CAS  Article  Google Scholar 

  • Iwamoto A, Nakamura A, Kurihara S, Ronse De Craene LP (2018) Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in the flower of the Monocots. J Plant Res. https://doi.org/10.1007/s10265-018-1022-0

    Article  PubMed  Google Scholar 

  • Jabbour F, Ronse De Craene LP, Nadot S, Damerval C (2009) Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Ann Bot 104:809–822

    PubMed  PubMed Central  Article  Google Scholar 

  • Jaramillo MA, Kramer EM (2007) The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci 168:61–72

    CAS  Article  Google Scholar 

  • Jaramillo MA, Manos PS, Zimmer EA (2004) Phylogenetic relationships of the perianthless Piperales: reconstructing the evolution of floral development. Int J Pl Sci 165:403–416

    Article  Google Scholar 

  • Kania W (1973) Entwicklungsgeschichtliche Untersuchungen an Rosaceenblüten. Bot Jahrb Syst 93:175–246

    Google Scholar 

  • Karrer AB (1991). Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. Dissertation, University of Zürich

  • Kirchoff BK (1991) Homeosis in the flowers of the Zingiberales. Am J Bot 78:833–837

    Article  Google Scholar 

  • Kirchoff BK (1997) Inflorescence and flower development in the Hedychieae (Zingiberaceae): Hedychium. Can J Bot 75:581–594

    Article  Google Scholar 

  • Kirchoff BK (2000) Hofmeister’s rule and primordium shape: influences on organ position in Hedychium coronarium (Zingiberaceae). In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 75–83

    Google Scholar 

  • Kitazawa MD, Fujimoto K (2014) A developmental basis for stochasticity in floral organ numbers. Frontiers Plant Sci 5:545

    Article  Google Scholar 

  • Kitazawa MD, Fujimoto K (2015) A dynamic phyllotaxis modelto determine floral organ number. PLOS Comput Biol. https://doi.org/10.1371/journal.pcbi.1004145

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitazawa MD, Fujimoto K (2016) Relationship between the species-representative phenotype and intraspecific ariation in Ranunculaceae floral organ and Asteraceae flower numbers. Ann Bot 117:925–935

    PubMed  PubMed Central  Article  Google Scholar 

  • Kramer EM, Hall JC (2005) Evolutionary dynamics of genes controlling floral development. Curr Opinion Plant Biol 8:13–18

    CAS  Article  Google Scholar 

  • Kress WJ (1990) Phylogeny and classification of Zingiberales. Ann Missouri Bot Gard 77:698–721

    Article  Google Scholar 

  • Krüger H, Tiedt LR, Wessels DCJ (1999) Floral development in the legume tree Colophospermum mopane, Caesalpinioideae: Detarieae. Bot J Linn Soc 131:223–233

    Article  Google Scholar 

  • Kubitzki K (1987) Origin and significance of trimerous flowers. Taxon 36:21–28

    Article  Google Scholar 

  • Kwiatkowska D (2008) Flowering and apical meristem growth dynamics. J Exp Bot 59:187–201

    CAS  PubMed  Article  Google Scholar 

  • Lehmann NL, Sattler R (1993) Homeosis in floral development of Sanguinaria canadensis and S. canadensis ‘Multiplex’ (Papaveraceae). Am J Bot 80:1323–1335

    Article  Google Scholar 

  • Leins P (1964) Die frühe Blütenentwicklung von Hypericum hookerianum Wight et Arn. und H. aegypticum L. Ber Deutsch Bot Ges 77:112–123

    Google Scholar 

  • Leins P, Erbar C (1985) Ein Beitrag zur Blütenentwicklung der Aristolochiaceen, einer Vermittlergruppe zu den Monokotylen. Bot Jahrb Syst 107:343–368

    Google Scholar 

  • Leins P, Erbar C (1987) Studien zur Blütenentwicklung an Compositen. Bot Jahrb Syst 108:381–401

    Google Scholar 

  • Leins P, Erbar C (1996) Early floral developmental studies in Annonaceae. Biosystematics and Ecology Series 10. In: Morawetz W, Winkler H (eds) Reproductive morphology in Annonaceae. Österr. Akademie der Wissenschaften, Wien, pp 1–27

    Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Leins P, Stadler P (1973) Entwicklungsgeschichtliche Untersuchungen am Androecium der Alismatales. Österr Bot Zeit 122:145–165

    Article  Google Scholar 

  • Li P, Johnston MO (2000) Heterochrony in plant evolutionary studies through the twentieth century. Bot Rev 66:57–88

    Article  Google Scholar 

  • Linder HP (1998) Morphology and the evolution of wind pollination. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 123–135

    Google Scholar 

  • Litt A, Kramer EM (2010) The ABC model and the diversification of floral organ identity. Seminars Cell Dev Biol 21:129–137

    CAS  Article  Google Scholar 

  • López J, Rodríguez-Riaňo T, Valtueňa FJ, Pérez JL, González M, Ortega-Olivencia A (2016) Does the Scrophularia staminode influence female and male functions during pollination? Int J Plant Sci 177:671–681

    Article  Google Scholar 

  • McMahon M, Hufford L (2005) Evolution and development in the Amorphoid clade (Amorpheae: Papilionoideae: Leguminosae): petal loss and dedifferentiation. Int J Plant Sci 166:383–396

    Article  Google Scholar 

  • Meicenheimer RD (1998) Decussate to spiral transitions in phyllotaxis. In: Jean RV, Barabé D (eds) Symmetry in plants. World Scientific, Singapore, pp 125–143

    Chapter  Google Scholar 

  • Meinhardt H, Gierer A (2000) Pattern formation by local self-activation and lateral inhibition. BioEssays 22:753–760

    CAS  PubMed  Article  Google Scholar 

  • Meyer-Abich A (1954) The principle of complementarity in biology. Acta Biotheor 11:57–74

    Article  Google Scholar 

  • Mirabet V, Das P, Boudaoud A, Hamant O (2011) The role of mechanical forces in plant morphogenesis. Annu Rev Plant Biol 62:365–385

    CAS  PubMed  Article  Google Scholar 

  • Mitteroecker P, Huttegger SM (2009) The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol Theor 4:54–67

    Article  Google Scholar 

  • Murbeck S (1912) Untersuchungen über den Blütenbau der Papaveraceen. Kungl Sv Vet Akad Handl 50:1–168

    Google Scholar 

  • Naghiloo S, Classen-Bockhoff R (2016) Developmental analysis of merosity and sexual morphs in Rubiaceae: a case study in Rubia and Cruciata. Flora 222:52–59

    Article  Google Scholar 

  • Naghiloo S, Classen-Bockhoff R (2017) Developmental changes in time and space promote evolutionary diversification of flowers: a case study in Dipsacoideae. Front Plant Sci 8:1665

    PubMed  PubMed Central  Article  Google Scholar 

  • Naghiloo S, Dadpour MR, Movafeghi A (2012) Floral ontogeny in Astragalus compactus (Leguminosae: Papilionoideae: Galegeae): variable occurrence of bracteoles and variable patterns of sepal initiation. Planta 235:793–805

    CAS  PubMed  Article  Google Scholar 

  • Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C (2012) Mechanical regulation of auxin-mediated growth. Curr Biol 22:1468–1476

    CAS  PubMed  Article  Google Scholar 

  • Newell AC, Shipman PD, Sun Z (2008) Phyllotaxis: cooperation and competition between mechanical and biochemical processes. J Theor Biol 251:421–439

    CAS  PubMed  Article  Google Scholar 

  • Nishino E (1988) Early floral organogenesis in Tripetaleia (Ericaceae). In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. J. Cramer, Berlin, pp 181–190

    Google Scholar 

  • Olson ME (2003) Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). Am J Bot 90:49–71

    PubMed  Article  Google Scholar 

  • Patchell MJ, Bolton MC, Mankowski P, Hall JC (2011) Comparative floral development in Cleomaceae reveals two distinct pathways leading to monosymmetry. Int J Plant Sci 172:352–365

    Article  Google Scholar 

  • Paulino JV, Prenner G, Mansano VF, Teixeira SP (2014) Comparative development of rare cases of a polycarpellate gynoecium in an otherwise monocarpellate family, Leguminosae. Am J Bot 101:572–586

    PubMed  Article  Google Scholar 

  • Plantefol L (1949) l’Ontogénie de la fleur, fondements d’une théorie florale nouvelle. Masson et Cie, Paris

    Google Scholar 

  • Prenner G (2004a) new aspects in floral development of Papilionoideae: initiated but suppressed bracteoles and variable initiation of sepals. Ann Bot 93:537–545

    PubMed  PubMed Central  Article  Google Scholar 

  • Prenner G (2004b) Floral development in Polygala myrtifolia (Polygalaceae) and its similarities with Leguminosae. Plant Syst Evol 249:67–76

    Article  Google Scholar 

  • Prenner G, Klitgaard BB (2008) Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Am J Bot 95:1349–1365

    PubMed  Article  Google Scholar 

  • Prenner G, Rudall P (2007) Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: exploring the organ-flower-inflorescence boundary. Am J Bot 94:1612–1629

    PubMed  PubMed Central  Article  Google Scholar 

  • Prusinkiewicz P, Barbier de Reuille P (2010) Constraints of space in plant development. J Exp Bot 61:2117–2129

    CAS  PubMed  Article  Google Scholar 

  • Ramirez-Domenech JL, Tucker SC (1990) Comparative ontogeny of the perianth in Mimosoid legumes. Am J Bot 77:624–635

    Article  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Phyllotaxis in higher plants. In: McManus MT, Veit BE (eds) Meristematic tissues in plant growth and development. Academic, Sheffield, pp 172–212

    Google Scholar 

  • Reinhardt D, Pesce ER, Stiger PM, Mandel T, Baltensperger K, Bennett M et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    CAS  Article  PubMed  Google Scholar 

  • Remane A (1956) Die Grundlagen des natűrlichen Systems, der vergleichenden Anatomie und der Phylogenetik, ed. 2. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Remizowa MV, Sokoloff DD, Rudall PJ (2010) Evolutionary history of the monocot flower. Ann Missouri Bot Gard 97:617–645

    Article  Google Scholar 

  • Ren Y, Li H-F, Zhao L, Endress PK (Eupteleaceae R (2007) Floral morphogenesis in Euptelea. Ann Bot 100:185–193

    PubMed  PubMed Central  Article  Google Scholar 

  • Richards JH, Bruhl JJ, Wilson KL (2006) Flower or spikelet? Understanding the morphology and development of reproductive structures in Exocarya (Cyperaceae, Mapanioideae, Chrysitricheae). Am J Bot 93:1241–1250

    PubMed  Article  Google Scholar 

  • Riegner MF (2008) Parallel evolution of plumage coloration and pattern in birds: implications for defining avian morphospace. Condor 110:599–614

    Article  Google Scholar 

  • Robinson S, Burian A, Couturier E, Landrein B, Louveaux M, Neumann ED, Peaucelle A, Weber A, Nakayama N (2013) Mechanical control of morpholgenesis at the shoot apex. J Exp Bot 64:4729–4744

    CAS  PubMed  Article  Google Scholar 

  • Ronse De Craene LP (2002) Floral development and anatomy of Pentadiplandra (Pentadiplandraceae): a key genus in the identification of floral morphological trends in the core Brassicales. Can J Bot 80:443–459

    Article  Google Scholar 

  • Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164(Suppl 5):S225–S235

    Article  Google Scholar 

  • Ronse De Craene LP (2005) Floral developmental evidence for the systematic position of Batis (Bataceae). Am J Bot 92:752–760

    PubMed  Article  Google Scholar 

  • Ronse De Craene LP (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann Bot 100:621–630

    PubMed  PubMed Central  Article  Google Scholar 

  • Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Syst Bot 33:301–325

    Article  Google Scholar 

  • Ronse De Craene LP (2010) Floral diagrams. An aid to understanding floral morphology and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ronse De Craene LP (2011) Floral development of Napoleonaea (Lecythidaceae), a deceptively complex flower. In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 279–295

    Chapter  Google Scholar 

  • Ronse De Craene LP (2013) Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. Plant Syst Evol 99:1599–1636

    Article  Google Scholar 

  • Ronse De Craene LP (2016) Meristic changes in flowering plants: how flowers play with numbers. Flora 221:22–37

    Article  Google Scholar 

  • Ronse De Craene LP (2017) Floral development of the endangered genus Medusagyne (Medusagynaceae-Malpighiales): spatial constraints of stamen and carpel increase. Int J Plant Sci 178:639–649

    Article  Google Scholar 

  • Ronse De Craene LP, Brockington S (2013) Origin and evolution of petals in the angiosperms. Plant Ecol Evol 146:5–25

    Article  Google Scholar 

  • Ronse De Craene LP, Bull-Hereñu K (2016) Obdiplostemony: the occurrence of a transitional stage linking robust flower configurations. Ann Bot 117:709–724

    PubMed  PubMed Central  Article  Google Scholar 

  • Ronse De Craene LP, Haston E (2006) The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. Bot J Linn Soc 151:453–494

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1987) The distribution and the systematic relevance of the androecial characters Oligomery and Polymery in the Magnoliophytina. Nord J Bot 7:239–253

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1990) The systematic relationship between Begoniaceae and Papaveraceae: a comparative study of their floral development. Bull Jard Bot Nat Belg 60:229–273

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1991a) The floral ontogeny of some members of the Phytolaccaceae (subfamily Rivinoideae) with a discussion of the evolution of the androecium in the Rivinoideae. Biol Jb Dodonaea 59:77–99

    Google Scholar 

  • Ronse De Craene LP, Smets E (1991b) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1992a) An updated interpretation of the androecium of the Fumariaceae. Can J Bot 70:1765–1776

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (1992b) Complex polyandry in the Magnoliatae: definition, distribution and systematic value. Nord J Bot 12:621–649

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1993a) Dédoublement revisited: towards a renewed in terpretation of the androecium of the Magnoliophytina. Bot J Linn Soc 113:103–124

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1993b) The distribution and systematic relevance of the androecial character polymery. Bot J Linn Soc 113:285–350

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (1994) Merosity in flowers: definition, origin, and taxonomic significance. Plant Syst Evol 191:83–104

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1995a) The androecium of monocotyledons. In: Rudall PJ, Cribb P, Cutler DF, Hymphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 243–254

    Google Scholar 

  • Ronse De Craene LP, Smets E (1995b) The distribution and systematic relevance of the androecial character oligomery. Bot J Linn Soc 118:193–247

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1996) The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Rep 107:1–17

    Google Scholar 

  • Ronse De Craene LP, Smets E (1998a) Notes on the evolution of androecial organisation in the Magnoliophytina (Angiosperms). Bot Acta 111:77–86

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (1998b) Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 85–112

    Google Scholar 

  • Ronse De Craene LP, Smets EF (2001) Floral developmental evidence for the systematic relationships of Tropaeolum (Tropaeolaceae). Ann Bot 88:879–892

    Article  Google Scholar 

  • Ronse De Craene LP, Clinckemaillie D, Smets DE (1993) Stamen-petal complexes in magnoliatae. Bulletin du Jardin botanique national de Belgique/Bulletin van de National Plantentuin van België 62(1/4):97

    Article  Google Scholar 

  • Ronse De Craene LP, De Laet J, Smets EF (1998a) Floral development and anatomy of Moringa oleifera (Moringaceae): what is the evidence for a capparalean or sapindalean affinity? Ann Bot 82:273–284

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF, Vanvinckenroye P (1998b) Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. J Plant Res 111:25–43

    Article  Google Scholar 

  • Ronse De Craene LP, Linder HP, Dlamini T, Smets EF (2001) Evolution and development of floral diversity of Melianthaceae, an enigmatic Southern African family. Int J Plant Sci 162:59–82

    Article  Google Scholar 

  • Ronse De Craene LP, Yang TY, Schols P, Smets EF (2002) Floral anatomy and systematics of Bretschneidera (Bretschneideraceae). Bot J Linn Soc 139:29–45

    Article  Google Scholar 

  • Ronse De Craene LP, Soltis PS, Soltis DE (2003) Evolution of floral structures in basal angiosperms. Int J Plant Sci 164(5 Suppl):S329–S363

    Article  Google Scholar 

  • Routier-Kierzkowska A-L, Smith RS (2013) Measuring the mechanics of morphogenesis. Curr Opinion Plant Biol 16:25–32

    Article  Google Scholar 

  • Rudall PJ (2010) All in a spin: centrifugal organ formation and floral patterning. Curr Opin Plant Biol 13:108–114

    PubMed  Article  Google Scholar 

  • Rudall PJ (2011) Centrifugal stamens in a modern phylogenetic context: was Corner right? In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 142–155

    Chapter  Google Scholar 

  • Rudall PJ, Bateman RM (2003) Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci 8:76–82

    CAS  PubMed  Article  Google Scholar 

  • Rudall PJ, Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytol 162:25–44

    Article  Google Scholar 

  • Running MP, Hake S (2001) The role of floral meristems in patterning. Curr opin Plant Biol 4:69–74

    CAS  PubMed  Article  Google Scholar 

  • Rutishauser R (2016) Acacia (wattle) and Cananga (ylang-ylang): from spiral to whorled and irregular (chaotic) phyllotactic patterns—a pictorial report. Acta Soc Bot Pol 85: https://doi.org/10.5586/asbp.3531

  • Rutishauser R, Moline P (2005) Evo-devo and the search for homology (“sameness”) in biological systems. Theor Biosci 124:213–241

    Article  Google Scholar 

  • Rutishauser R, Sattler R (1985) complementarity and heuristic value of contrasting models in structural botany I. General considerations. Bot Jahrb Syst 107:415–455

    Google Scholar 

  • Rutishauser R, Ronse De Craene LP, Smets E, Mendoza-Heuer I (1998) Theligonum cynocrambe: developmental morphology of a peculiar rubaceous herb. Plant Syst Evol 210:1–24

    Article  Google Scholar 

  • Sattler R (1962) Zur frühen Infloreszenz und Blütenentwicklung der Primulales sensu lato mit besonderer Berücksichtigung der Stamen-Petalum-Entwicklung. Bot Jahrb Syst 81:385–396

    Google Scholar 

  • Sattler R (1978) “Fusion” and “Continuity” in floral morphology. Notes Roy Bot Gard Edinb 36:397–405

    Google Scholar 

  • Sattler R (1988) Homeosis in plants. Am J Bot 75:1606–1617

    Article  Google Scholar 

  • Sattler R, Singh V (1978) Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot J Linn Soc 77:141–156

    Article  Google Scholar 

  • Saunders ER (1936) The vascular ground-plan as a guide to the floral ground-plan: illustrated from Cistaceae. New Phytol 35:47–67

    Article  Google Scholar 

  • Saunders ER (1937) Floral morphology, a new outlook, with special reference to the interpretation of the gynoecium II. Heffer and Sons, Cambridge

    Google Scholar 

  • Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK et al (2017) The ancestral flower of angiosperms and its early diversifcation. Nat Commun. https://doi.org/10.1038/nscomms16047

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider EL, Tucker SC, Williamson PS (2003) Floral development in the Nymphaeales. Int J Plant Sci 164:S279–S292

    Article  Google Scholar 

  • Schöffel K (1932) Untersuchungen über den Blütenbau der Ranunculaceen. Planta 17:315–371

    Article  Google Scholar 

  • Schönenberger J, Conti E (2003) Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhychocalycaceae, and Alzateaceae (Myrtales). Am J Bot 90:293–309

    PubMed  Article  Google Scholar 

  • Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151

    PubMed  Article  Google Scholar 

  • Scotland RW (2010) Deep homology: a view from systematics. Bioessays 32:438–449

    PubMed  Article  Google Scholar 

  • Sharma B, Guo C, Kong H, Kramer EM (2011) Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytol 191:870–883

    PubMed  Article  Google Scholar 

  • Smith RS, Kuhlemeier C, Prusinkiewicz P (2006) Inhibition fields for phyllotactic pattern formation; a simulation study. Can J Bot 84:1635–1649

    Article  Google Scholar 

  • Smyth DR, Bowman JL, Meyrowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer, Sunderland

    Google Scholar 

  • Specht CD, Bartlett ME (2009) Flower evolution: the origin and subsequent diversification of the angiosperm flower. Annu Rev Ecol Evol Syst 40:217–243

    Article  Google Scholar 

  • Specht CD, Howarth DG (2015) Adaptation in flower form: a comparative evodevo approach. New Phytol 206:74–90

    PubMed  Article  Google Scholar 

  • Specht CD, Yockteng R, Almeida AM, Kirchoff BK, Kress WJ (2012) Homoplasy, pollination, and emerging complexity during the evolution of floral development in the tropical gingers (Zingiberales). Bot Rev 78:440–462

    Article  Google Scholar 

  • Staedler YM, Endress PK (2009) Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceae). Int J Plant Sci 170:522–550

    Article  Google Scholar 

  • Stuessy TF, Mayer V, Hörandl E (eds) (2003) Deep morphology: towards a renaissance of morphology in plant systematics. ARG Gantner, Liechtenstein

    Google Scholar 

  • Stuppy WH, Maisano JA, Colbert MW, Rudall PJ, Rowe TB (2003) Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends Plant Sci 8:2–6

    CAS  PubMed  Article  Google Scholar 

  • Takhtajan A (1972) Patterns of ontogenetic alterations in the evolution of higher plants. Phytomorphology 22:164–171

    Google Scholar 

  • Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619

    PubMed  PubMed Central  Article  Google Scholar 

  • Traas J (2013) Phyllotaxis. Development 140:249–253

    CAS  PubMed  Article  Google Scholar 

  • Tsou C-H (1998) Early floral development of Camellioideae (Theaceae). Am J Bot 85:1531–1547

    CAS  PubMed  Article  Google Scholar 

  • Tucker SC (1988) Loss versus suppression of floral organs. In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. J. Cramer, Berlin, pp 69–82

    Google Scholar 

  • Tucker SC (1997) Floral evolution, development, and convergence: the hierarchical-significance hypothesis. Int J Plant Sci 158(6 Suppl):S143–S161

    Article  Google Scholar 

  • Tucker SC (1998) Floral ontogeny in Legume genera Petalostylis, Labichea, and Dialium (Caesalpinioideae: Cassieae), a series in floral reduction. Am J Bot 85:184–208

    CAS  PubMed  Article  Google Scholar 

  • Tucker SC (1999) Evolutionary lability of symmetry in early floral development. Int J Plant Sci 160(6 Suppl):S25–S39

    CAS  PubMed  Article  Google Scholar 

  • Tucker SC (2000a) Floral development and homeosis in Saraca (Leguminosae: Caesalpinioideae: Detarieae). Int J Plant Sci 161:537–549

    Article  Google Scholar 

  • Tucker SC (2000b) Evolutionary loss of sepals and/or petals in Detarioid legume taxa (Aphanocalyx, Brachystegia, and Monopetalanthus (Leguminosae: Caesalpinioideae). Am J Bot 87:608–624

    CAS  PubMed  Article  Google Scholar 

  • Tucker SC (2000c) Floral development in tribe Detarieae (Leguminosae: Caesalpinioideae): Amherstia, Brownea, and Tamarindus. Am J Bot 87:1385–1407

    CAS  PubMed  Article  Google Scholar 

  • Tucker SC (2001) The ontogenetic basis for missing petals in Crudia (Leguminosae: Caesalpinioideae: Detarieae). Int J Plant Sci 162:83–89

    Article  Google Scholar 

  • Tucker SC (2002) Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae) 2. Zygomorphic taxa with petal and stamen suppression. Am J Bot 89:888–907

    PubMed  Article  Google Scholar 

  • Tucker SC (2003) Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinoideae). III. Adaxially initiated whorls in Julbernardia and Sindora. Int J Plant Sci 164:275–286

    Article  Google Scholar 

  • Tucker SC, Hodges SC (2005) Ranunculaceae floral ontogeny of Aquilegia, Semiaquilegia and Enemion. Int J Plant Sci 166:557–574

    Article  Google Scholar 

  • Uhl NW, Moore HE (1977) Centrifugal stamen initiation in phytelephantoid palms. Am J Bot 64:1152–1161

    Article  Google Scholar 

  • Uhl NW, Moore HE (1980) Androecial development in six polyandrous genera representing five major groups of palms. Ann Bot 45:57–75

    Article  Google Scholar 

  • van Heel WA (1966) Morphology of the androecium in Malvales. Blumea 13:177–394

    Google Scholar 

  • van Heel WA (1978) Morphology of the pistil in Malvaceae-Ureneae. Blumea 24:123–137

    Google Scholar 

  • van Heel WA (1987) Androecium development in Actinidia chinensis and A. melanandra (Actinidiaceae). Bot Jahrb Syst 109:17–23

    Google Scholar 

  • Van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol Evol 27:353–361

    PubMed  Article  Google Scholar 

  • van der Niet T, Zollikofer CPE, Ponce de León MS, Johnson SD, Linder HP (2010) Three-dimensional geometric morphometrics for studying floral shape variation. Trends Plant Sc 15:423–426

    Article  CAS  Google Scholar 

  • van der Niet T, Peakall R, Johnson SD (2014) Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann Bot 113:199–211

    PubMed  PubMed Central  Article  Google Scholar 

  • Vanvinckenroye P, Smets E (1996) Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). J Plant Res 109:387–402

    Article  Google Scholar 

  • Vasconcelos TNC, Prenner G, Buenger MO, De-Carvalho PS, Wingler A, Lucas EJ (2015) Systematic and evolutionary implications of stamen position in Myrteae (Myrtaceae). Bot J Linn Soc 179:388–402

    Article  Google Scholar 

  • Vasconcelos TNC, Prenner G, Santos MF, Wingler A, Lucas EJ (2017) Links between parallel evolution an systematic complexity in angiosperms—a case study of floral development in Myrcia s.l. (Myrtaceae). Persp Plant Ecol Evol Syst 24:11–24

    Article  Google Scholar 

  • Vergara-Silva F (2003) Plants and the conceptual articulation of evolutionary developmental biology. Biol Phil 18:249–284

    Article  Google Scholar 

  • von Balthazar M, Schönenberger J, Alverson WS, Janka H, Bayer C, Baum DA (2006) Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and Malvales. Plant Syst Evol 260:171–197

    Google Scholar 

  • Vrijdaghs A, Caris P, Goetghebeur P, Smets E (2005) Floral ontogeny in Scirpus. Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth. Ann Bot 95:1199–1209

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Walker-Larsen J, Harder LD (2001) Vestigial organs as opportunities for functional innovation: the example of the Penstemon staminode. Evolution 55:477–487

    CAS  PubMed  Article  Google Scholar 

  • Wang Y-Z, Liangh R-H, Wang B-H, Li J-M, Qiu Z-J, Li Z-Y, Weber A (2010) Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59:1044–1152

    Article  Google Scholar 

  • Wanntorp L, Anderberg AA (2011) Evolution and diversification of brook weeds (Samolus, Samolaceae, Ericales). Int J Plant Sci 172:250–266

    Article  Google Scholar 

  • Wanntorp L, Ronse De Craene L, Peng C-I, Anderberg AA (2012) Floral ontogeny and morphology of Stimpsonia and Ardisiandra, two aberrant genera of the primuloid clade of Ericales. Int J Plant Sci 173:1023–1035

    Article  Google Scholar 

  • Weber A (2003) What is morphology and why is it time for its renaissance in plant systematics? In: Stuessy TF, Mayer V, Hörandl E (eds) Deep morphology: towards a renaissance of morphology in plant systematics. ARG Gantner, Liechtenstein, pp 3–32

    Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–710

    CAS  PubMed  Article  Google Scholar 

  • Yoshida H (2012) Is the lodicule a petal: molecular evidence? Plant Sci 184:121–128

    CAS  PubMed  Article  Google Scholar 

  • Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H (2014) Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early diverging times. Nat Commun 5:4956. https://doi.org/10.1038/ncomms5956

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhang R-J, Schönenberger J (2014) Early floral development of Pentaphylaceae (Ericales) and its systematic implications. Plant Syst Evol 300:1547–1560

    Article  Google Scholar 

  • Zhang W, Steinmann VW, Nikolov L, Kramer EM, Davis CC (2013) Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Front Plant Sci 4:302. https://doi.org/10.3389/fpls.2013.00302

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Bachelier JB, Chang H-L, Tian X-h, Ren Y (2012) Inflorescence and floral development in Ranunculus and three allied genera in Ranunculeae (Ranunculoideae, Ranunculaceae). Plant Syst Evol 298:1057–1071

    Article  Google Scholar 

  • Zimmerman E, Prenner G, Bruneau A (2013) Floral morphology of Apuleia leiocarpa (Dialiinae: Leguminosae), an unusual andromonoecious legume. Int J Plant Sci 174:154–160

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Akitoshi Iwamoto for inviting me to participate in the symposium entitled “Floral development, re-evaluation of its importance” organized at the 80th Annual Meeting of the Botanical Society of Japan in Okinawa. I thank the Japanese Society for Promotion of Science for funding my travel to Japan. I also thank the editors of JPR for suggesting this special volume for Flo-Re-S. I am grateful to various colleagues including Dr. Akitoshi Iwamoto, Dr. Kester Bull-Hereñu, Prof. R. Classen-Bockhoff, and Dr. Wei Lai for helpful conversations on morphological topics. The Royal Botanic Garden Edinburgh (RBGE) is supported by the Scottish Government’s Rural and Environmental Science and Analytical Services Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ronse De Craene.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ronse De Craene, L. Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. J Plant Res 131, 367–393 (2018). https://doi.org/10.1007/s10265-018-1021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-018-1021-1

Keywords

  • Floral meristem
  • Genetics
  • Heterochrony
  • Morphospace
  • Organ pressure
  • Size change