Advertisement

Journal of Plant Research

, Volume 131, Issue 4, pp 633–640 | Cite as

Reproductive biology of the threatened Lilium pomponium (Liliaceae), a species endemic to Maritime and Ligurian Alps

  • Gabriele Casazza
  • Angelino Carta
  • Paolo Giordani
  • Maria Guerrina
  • Lorenzo Peruzzi
  • Luigi Minuto
Regular Paper

Abstract

Pollination ecology and breeding system of Lilium pomponium L. were studied, and their effect on the reproductive outcome was assessed. This species has high conservation interest in Europe, because it is included in Annex V of the EU Habitat Directive and it is one out of the five Lilium species listed in IUCN Global Red List. To achieve our aim, the pollen vectors as well as the effect of bagging, emasculation and artificial pollination on reproductive output were studied. The most frequent visitor was the Lepidopteran Gonepteryx rhamnii. In general, reproductive outputs were close to zero for all the self-pollination treatments; however, geitonogamy and facilitated selfing seem slightly more efficient than autogamy, as also confirmed by self-compatibility and autofertility indices. Altogether, our results suggest a self-incompatible outcrossing breeding system, with a poor capacity for selfing. Nevertheless, climate change and anthropic threats might promote a shift toward self-fertilization, even maladaptive, favouring the few individuals able to produce selfed seeds.

Keywords

Conservation Pollen vectors Reproductive strategy Threatened species 

Notes

Acknowledgements

We are grateful to Simona Bonelli (Department of Life Sciences and Systems Biology, University of Turin) and Loris Galli (DISTAV, University of Genoa) for insect identification. We thank Stefano Iardella, Carmelo Nicodemo Macrì, Elio Guerra and Luca Ulzi for their support in field and laboratory work.

Supplementary material

10265_2018_1019_MOESM1_ESM.pdf (78 kb)
Supplementary material 1 (PDF 78 KB)

References

  1. Andersson S (2003) Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology 13:1–11.  https://doi.org/10.1007/s000490300000 CrossRefGoogle Scholar
  2. Ashman T-L, Knight TM, Steets JA et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421.  https://doi.org/10.1890/03-8024 CrossRefGoogle Scholar
  3. Austin-McRae E (1998) Lilies: a guide for growers and collectors. Timber Press, IncorporatedGoogle Scholar
  4. Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284.  https://doi.org/10.1038/nrg776 CrossRefPubMedGoogle Scholar
  5. Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos Trans R Soc B Biol Sci 358:991–1004.  https://doi.org/10.1098/rstb.2003.1301 CrossRefGoogle Scholar
  6. Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368CrossRefPubMedGoogle Scholar
  7. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw.  https://doi.org/10.18637/jss.v067.i01 Google Scholar
  8. Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135.  https://doi.org/10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  9. Burd M (1994) Bateman’s principle and plant reproduction: The role of pollen limitation in fruit and seed set. Bot Rev 60:83–139.  https://doi.org/10.1007/BF02856594 CrossRefGoogle Scholar
  10. Busch JW (2005) The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Am J Bot 92:1503–1512.  https://doi.org/10.3732/ajb.92.9.1503 CrossRefPubMedGoogle Scholar
  11. Carta A, Bedini G, Giannotti A et al (2015) Mating system modulates degree of seed dormancy in Hypericum elodes L. (Hypericaceae). Seed Sci Res 25:299–305.  https://doi.org/10.1017/S0960258515000252 CrossRefGoogle Scholar
  12. Casazza G, Giordani P, Benesperi R et al (2014) Climate change hastens the urgency of conservation for range-restricted plant species in the central-northern Mediterranean region. Biol Conserv 179:129–138.  https://doi.org/10.1016/j.biocon.2014.09.015 CrossRefGoogle Scholar
  13. Commission of the European Communities (2009) Report on the conservation status of habitat types and species as required under article 17 of the Habitats Directive. Commission of the European Communities, BrusselsGoogle Scholar
  14. Council of European Communities (1992) Council Directive 92/43/EEC of 21 May on the conservation of natural habitats and of wild fauna and flora. Off J Eur Commun 35:7–50Google Scholar
  15. Cruden RW (1977) Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31:32–46.  https://doi.org/10.2307/2407542 CrossRefPubMedGoogle Scholar
  16. Eckert CG, Kalisz S, Geber MA et al (2010) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43.  https://doi.org/10.1016/j.tree.2009.06.013 CrossRefPubMedGoogle Scholar
  17. Evans MEK, Menges ES, Gordon DR (2003) Reproductive biology of three sympatric endangered plants endemic to Florida scrub. Biol Conserv 111:235–246.  https://doi.org/10.1016/S0006-3207(02)00293-8 CrossRefGoogle Scholar
  18. Fryxell PA (1957) Mode of reproduction of higher plants. Bot Rev 23:135–233CrossRefGoogle Scholar
  19. Gabrielová J, Münzbergová Z, Tackenberg O, Chrtek J (2013) Can we distinguish plant species that are rare and endangered from other plants using their biological traits? Folia Geobot 48:449–466.  https://doi.org/10.1007/s12224-012-9145-x CrossRefGoogle Scholar
  20. Gargano D (2015) Lilium pomponium. The IUCN red list of threatened species 2015: e.T190872A70290522.  https://doi.org/10.2305/IUCN.UK.2015-1.RLTS.T190872A70290522.en
  21. Gilman RT, Fabina NS, Abbott KC, Rafferty NE (2012) Evolution of plant–pollinator mutualisms in response to climate change. Evol Appl 5:2–16.  https://doi.org/10.1111/j.1752-4571.2011.00202.x CrossRefPubMedGoogle Scholar
  22. Guerrina M, Casazza G, Conti E et al (2016) Reproductive biology of an Alpic paleo-endemic in a changing climate. J Plant Res 129:477–485.  https://doi.org/10.1007/s10265-016-0796-1 CrossRefPubMedGoogle Scholar
  23. Guitián J, Sánchez JM, Guitián P (1994) Pollination ecology of Petrocoptis grandiflora Rothm. (Caryophyllaceae); a species endemic to the north-west part of the Iberian Peninsula. Bot J Linn Soc 115:19–27.  https://doi.org/10.1111/j.1095-8339.1994.tb01764.x CrossRefGoogle Scholar
  24. Harder LD, Barrett SCH, Cole WW (2000) The mating consequences of sexual segregation within inflorescences of flowering plants. Proc R Soc Lond B Biol Sci 267:315–320.  https://doi.org/10.1098/rspb.2000.1002 CrossRefGoogle Scholar
  25. Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci 97:7037–7042.  https://doi.org/10.1073/pnas.97.13.7037 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  27. Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70.  https://doi.org/10.2307/2410780 CrossRefPubMedGoogle Scholar
  28. İkinci N (2011) Molecular phylogeny and divergence times estimates of Lilium section Liriotypus (Liliaceae) based on plastid and nuclear ribosomal ITS DNA sequence data. Turk J Bot 35:319–330Google Scholar
  29. Ilse D (1928) Über den farbensinn der tagfalter. Z Für Vgl Physiol 8:658–692.  https://doi.org/10.1007/BF00338976 CrossRefGoogle Scholar
  30. Kliber A, Eckert CG (2004) Temporal decline in reproductive investment among flowers in a sequentially blooming plant: proximate mechanisms and adaptive significance. Ecology 85:1675–1687CrossRefGoogle Scholar
  31. Lehnebach C, Riveros M (2003) Pollination biology of the Chilean endemic orchid Chloraea lamellata. Biodivers Conserv 12:1741–1751.  https://doi.org/10.1023/A:1023666800948 CrossRefGoogle Scholar
  32. Levin DA (2012) Mating system shifts on the trailing edge. Ann Bot 109:613–620.  https://doi.org/10.1093/aob/mcr159 CrossRefPubMedGoogle Scholar
  33. Liu Y, Mu J, Niklas KJ et al (2012) Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytol 195:427–436.  https://doi.org/10.1111/j.1469-8137.2012.04178.x CrossRefPubMedGoogle Scholar
  34. Lloyd DG, Schoen DJ (1992) Self- and cross-fertilization in plants. I. Functional dimensions. Int J Plant Sci 153:358–369CrossRefGoogle Scholar
  35. Lundqvist A (1991) Four-locus S-gene control of self-incompatibility made probable in Lilium martagon (Liliaceae). Hereditas 114:57–63.  https://doi.org/10.1111/j.1601-5223.1991.tb00553.x CrossRefGoogle Scholar
  36. Mascarello C, Sacco E, Carasso V et al (2011) Evaluation of the seed germination of two protected species: Lilium pomponium L. and Lilium martagon L. Acta Hortic 385–391.  https://doi.org/10.17660/ActaHortic.2011.900.48
  37. Mimura M, Aitken SN (2007) Increased selfing and decreased effective pollen donor number in peripheral relative to central populations in Picea sitchensis (Pinaceae). Am J Bot 94:991–998.  https://doi.org/10.3732/ajb.94.6.991 CrossRefPubMedGoogle Scholar
  38. Minuto L, Guerrina M, Roccotiello E et al (2014) Pollination ecology in the narrow endemic winter-flowering Primula allionii (Primulaceae). J Plant Res 127:141–150.  https://doi.org/10.1007/s10265-013-0588-9 CrossRefPubMedGoogle Scholar
  39. Moeller DA (2006) Geographic structure of pollinator communities, reproductive assurance, and the evolution of self-pollination. Ecology 87:1510–1522. 10.1890/0012-9658(2006)87[1510:GSOPCR]2.0.CO;2CrossRefPubMedGoogle Scholar
  40. Montaner C, Floris E, Alvarez JM (2001) Geitonogamy: a mechanism responsible for high selfing rates in borage (Borago officinalis L.). Theor Appl Genet 102:375–378.  https://doi.org/10.1007/s001220051656 CrossRefGoogle Scholar
  41. Noble V, Diadema K (2011) La flore des Alpes-Maritimes et de la principauté de Monaco. Originalité et diversité. Naturalia Publications, TurriersGoogle Scholar
  42. Paschke M, Abs C, Schmid B (2002) Effects of population size and pollen diversity on reproductive success and offspring size in the narrow endemic Cochlearia bavarica (Brassicaceae). Am J Bot 89:1250–1259.  https://doi.org/10.3732/ajb.89.8.1250 CrossRefPubMedGoogle Scholar
  43. Pelkonen V-P, Niittyvuopio A, Pirttilä AM et al (2007) Phylogenetic background of orange lily (Lilium bulbiferum s.l.) cultivars from a genetically isolated environment. Plant Biol 9:534–540.  https://doi.org/10.1055/s-2007-965042 CrossRefPubMedGoogle Scholar
  44. Philipp M, Hansen LB, Adsersen H, Siegismund HR (2004) Reproductive ecology of the endemic Lecocarpus pinnatifidus (Asteraceae) in an isolated population in the Galápagos Islands. Bot J Linn Soc 146:171–180.  https://doi.org/10.1111/j.1095-8339.2004.00323.x CrossRefGoogle Scholar
  45. Pignatti S (1982) Flora d’Italia. EdagricoleGoogle Scholar
  46. R Development Core Team (2011) R: A language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  47. Ramsey M, Vaughton G (2000) Pollen quality limits seed set in Burchardia umbellata (Colchicaceae). Am J Bot 87:845–852CrossRefPubMedGoogle Scholar
  48. Rešetnik I, Liber Z, Satovic Z et al (2007) Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences. Plant Syst Evol 265:45–58.  https://doi.org/10.1007/s00606-006-0513-y CrossRefGoogle Scholar
  49. Rodger JG, van Kleunen M, Johnson SD (2013) Pollinators, mates and Allee effects: the importance of self-pollination for fecundity in an invasive lily. Funct Ecol 27:1023–1033CrossRefGoogle Scholar
  50. Rodríguez-Riaño T, Ortega-Olivencia A, Devesa JA (1999) Reproductive biology in two Genisteae (Papilionoideae) endemic of the western Mediterranean region: Cytisus striatus and Retama sphaerocarpa. Can J Bot 77:809–820Google Scholar
  51. Rossi G, Montagnani C, Gargano D et al (2013) Lista rossa della flora italiana. 1. Policy species e altre specie minacciate. pp 1–58Google Scholar
  52. Routley MB, Husband BC (2003) The effect of protandry on siring success in Chamerion angustifolium (Onagraceae) with different inflorescence sizes. Evol Int J Org Evol 57:240–248CrossRefGoogle Scholar
  53. Routley MB, Bertin RI, Husband BC (2004) Correlated evolution of dichogamy and self-incompatibility: a phylogenetic perspective. Int J Plant Sci 165:983–993.  https://doi.org/10.1086/423881 CrossRefGoogle Scholar
  54. Sakazono S, Hiramatsu M, Huang K-L et al (2012) Phylogenetic relationship between degree of self-compatibility and floral traits in Lilium longiflorum Thunb. (Liliaceae). J Jpn Soc Hortic Sci 81:80–90.  https://doi.org/10.2503/jjshs1.81.80 CrossRefGoogle Scholar
  55. Schemske DW, Husband BC, Ruckelshaus MH et al (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology 75:585–606.  https://doi.org/10.2307/1941718 CrossRefGoogle Scholar
  56. Shi X, Wang J-C, Zhang D-Y et al (2010) Pollen source and resource limitation to fruit production in the rare species Eremosparton songoricum (Fabaceae). Nord J Bot 28:438–444.  https://doi.org/10.1111/j.1756-1051.2010.00658.x CrossRefGoogle Scholar
  57. Shivanna KR, Tandon R (2014) Reproductive ecology of flowering plants: A manual. Springer IndiaGoogle Scholar
  58. Skinner MW (1988) Comparative pollination ecology and floral evolution in Pacific Coast Lilium. Disertation, Harvard UniversityGoogle Scholar
  59. Skinner MW (2002) Nomenclatural changes in North American Lilium (Liliaceae). Novon 12:253–261.  https://doi.org/10.2307/3392964 CrossRefGoogle Scholar
  60. Skinner MW, Sorrie BA (2002) Conservation and ecology of Lilium pyrophilum, a new species of Liliaceae from the Sandhills Region of the Carolinas and Virginia. USA Novon 12:94–105.  https://doi.org/10.2307/3393247 CrossRefGoogle Scholar
  61. Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  62. Stout JC (2007) Reproductive biology of the invasive exotic shrub, Rhododendron ponticum L. (Ericaceae). Bot J Linn Soc 155:373–381.  https://doi.org/10.1111/j.1095-8339.2007.00719.x CrossRefGoogle Scholar
  63. Sun S-G, Yao C-Y (2013) Increased seed set in down slope-facing flowers of Lilium duchartrei. J Syst Evol 51:405–412.  https://doi.org/10.1111/jse.12002 CrossRefGoogle Scholar
  64. Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164:878–885.  https://doi.org/10.1016/j.jplph.2006.05.013 CrossRefPubMedGoogle Scholar
  65. Thomson JD, Wilson P, Valenzuela M, Malzone M (2000) Pollen presentation and pollination syndromes, with special reference to Penstemon. Plant Species Biol 15:11–29.  https://doi.org/10.1046/j.1442-1984.2000.00026.x CrossRefGoogle Scholar
  66. Vogler DW, Stephenson AG (2001) The Potential for mixed mating in a self-incompatible plant. Int J Plant Sci 162:801–805.  https://doi.org/10.1086/320787 CrossRefGoogle Scholar
  67. Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. N Z J Bot 24:163–178.  https://doi.org/10.1080/0028825X.1986.10409726 CrossRefGoogle Scholar
  68. Wickman P-O (1996) Butterfly leks. Entomol Tidskr 117:73Google Scholar
  69. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  70. Yokota S, Yahara T (2012) Pollination biology of Lilium japonicum var. abeanum and var. japonicum: evidence of adaptation to the different availability of diurnal and nocturnal pollinators. Plant Species Biol 27:96–105.  https://doi.org/10.1111/j.1442-1984.2011.00336.x CrossRefGoogle Scholar
  71. Zych M, Stpiczyńska M (2012) Neither protogynous nor obligatory out-crossed: pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol 14:285–294.  https://doi.org/10.1111/j.1438-8677.2011.00510.x CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Gabriele Casazza
    • 1
  • Angelino Carta
    • 2
  • Paolo Giordani
    • 3
  • Maria Guerrina
    • 4
  • Lorenzo Peruzzi
    • 2
  • Luigi Minuto
    • 1
  1. 1.DISTAV, University of GenoaGenoaItaly
  2. 2.Department of Biology, Unit of BotanyUniversity of PisaPisaItaly
  3. 3.DIFAR, University of GenoaGenoaItaly
  4. 4.Department of Ecology and GeneticsUppsala UniversityUppsalaSweden

Personalised recommendations