Journal of Plant Research

, Volume 131, Issue 3, pp 487–496 | Cite as

Molecular characterisation of two novel starch granule proteins 1 in wild and cultivated diploid A genome wheat species

  • Ermelinda Botticella
  • Anna Pucci
  • Francesco Sestili
Regular Paper


Starch synthase IIa, also known as starch granule protein 1 (SGP-1), plays a key role in amylopectin biosynthesis. The absence of SGP-1 in cereal grains is correlated to dramatic changes in the grains’ starch content, structure, and composition. An extensive investigation of starch granule proteins in this study revealed a polymorphism in the electrophoretic mobility of SGP-1 between two species of wheat, Triticum urartu and T. monococcum; this protein was, however, conserved among all other Triticum species that share the A genome inherited from their progenitor T. urartu. Two different electrophoretic profiles were identified: SGP-A1 proteins of T. urartu accessions had a SDS–PAGE mobility similar to those of tetraploid and hexaploid wheat species; conversely, SGP-A1 proteins of T. monococcum ssp. monococcum and ssp. boeoticum accessions showed a different electrophoretic mobility. The entire coding region of the two genes was isolated and sequenced in an attempt to explain the polymorphism identified. Several single nucleotide polymorphisms (SNPs) responsible for amino acid changes were identified, but no indel polymorphism was observed to explain the difference in electrophoretic mobility. Amylose content did not differ significantly among T. urartu, T. monococcum ssp. boeoticum and T. monococcum ssp. monococcum, except in one accession of the ssp. boeoticum. Conversely, several interspecific differences were observed in viscosity properties (investigated as viscosity profiles using a rapid visco analyzer—RVA profiles) of these cereal grains. T. monococcum ssp. boeoticum accessions had the lowest RVA profiles, T. urartu accessions had an intermediate RVA profile, whereas T. monococcum ssp. monococcum showed the highest RVA profile. These differences could be associated with the numerous amino acid and structural changes evident among the SGP-1 proteins.


Diploid wheat Gel shifting Phylogenesis Polymorphism Starch granule proteins Starch synthase 



Authors wish to thank Prof. Domenico Lafiandra for the critical revision of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10265_2017_1005_MOESM1_ESM.pdf (138 kb)
Supplementary material 1 (PDF 138 KB)
10265_2017_1005_MOESM2_ESM.xlsx (22 kb)
Supplementary material 2 (XLSX 21 KB)


  1. Botticella E, Sestili F, Lafiandra D (2012) Characterization of SBEIIa homoeologous genes in bread wheat. Mol Genet Gen 287:515–524. CrossRefGoogle Scholar
  2. Botticella E, Sestili F, Ferrazzano G, Mantovani P, Cammerata A, D’Egidio MG, Lafiandra D (2016) The impact of the SSIIa null mutations on grain traits and composition in durum wheat. Breed Sci 66:572–579. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brandolini A, Vaccino P, Boggini G, Ozkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheat. Genome 49:297–305. CrossRefPubMedGoogle Scholar
  4. Bunce NAC, White RP, Shewry PR (1985) Variation in estimates of molecular weights of cereal prolamins by SDS–PAGE. J Cereal Sci 3:131–142. CrossRefGoogle Scholar
  5. Denyer K, Hylton CM, Jenner CF, Smith AM (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196:256–265CrossRefGoogle Scholar
  6. Dvorak J, Di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31CrossRefPubMedGoogle Scholar
  7. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387PubMedPubMedCentralGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. CrossRefPubMedGoogle Scholar
  9. Feuillet C, Penger A, Gellner K, Mast A, Keller B (2001) Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol 125:1304–1313CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gao M, Chibbar RN (2000) Isolation, characterization and expression of starch synthases IIa cDNA from wheat (Triticum aestivum L.). Genome 43:768–775CrossRefPubMedGoogle Scholar
  11. Golovnina KA, Kondratenko EJ, Blinov AG, Goncharov NP (2009) Phylogeny of the A genome of wild and cultivated wheat species. Russ J Genet 43:1360–1367CrossRefGoogle Scholar
  12. Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol 135:459–470. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guzmán C, Alvarez JB (2016) Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theor Appl Genet 129:1–16. CrossRefPubMedGoogle Scholar
  14. Hogg AC, Gause K, Hofer P, Martin JM, Graybosch RA, Hansen LE, Giroux MJ (2013) Creation of a high-amylose durum wheat through mutagenesis of Starch Synthase II (SSIIa). J Cereal Sci 57:377–383. CrossRefGoogle Scholar
  15. Kim MK, Kang YK (1999) Positional preference of proline in α-helices. Protein Sci 8:1492–1499CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li Z, Chu X, Mouille G, Yan L, Kosar-Hashemi B, Hey S, Napier J, Shewry P, Clarke B, Appels R, Morell M, Rahman S (1999) The localization and expression of the class II starch synthases of wheat. Plant Physiol 120:1147–1155. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Marchler-Bauer A, Zheng C, Chitsaz F et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352. CrossRefPubMedGoogle Scholar
  18. Marcussen T, Sandve SR, Heier L et al (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1251788. CrossRefGoogle Scholar
  19. Mohammadkhani A, Stoddard FL, Marshall DR (1998) Survey of amylose content in Secale cereale, Triticum monococcum, T. turgidum and T. tauschii. J Cereal Sci 28:273–280CrossRefGoogle Scholar
  20. Morell MK, Kosar-Hashemi B, Cmiel M, Samuel MS, Chandler P, Rahman S, Buleon A, Batey IL, Li ZY (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34:172–184CrossRefGoogle Scholar
  21. Peng M, Gao M, Båga M, Hucl P, Chibbar RN (2000) Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol 124:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pozzi C, Salamini F (2007) Genomics of wheat domestication. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement. Springer, Dordrecht, pp 453–481CrossRefGoogle Scholar
  23. Rahman S, Kosar-Hashemi B, Samuel MS, Hill A, Abbott DC, Skerritt JH, Preiss J, Appels R, Morell MK (1995) The major proteins of wheat endosperm starch granules. Aust J Plant Physiol 22:793–803CrossRefGoogle Scholar
  24. Rakszegi M, Kisgyörgy BN, Kiss T, Sestili F, Láng L, Lafiandra D, Bedő Z (2015) Development and characterisation of high-amylose wheat lines. Starch-Stärke 66:1–8. CrossRefGoogle Scholar
  25. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106:1760–1765. CrossRefPubMedGoogle Scholar
  26. Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the ends of α-helices. Sci 240:1648–1652CrossRefGoogle Scholar
  27. Rost B, Yachdav G, Liu J (2004) The predict protein server. Nucleic Acids Res 32:W321–W326. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones H, Lafiandra D (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10:144. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sestili F, Sparla F, Botticella E, Janni M, D’Ovidio R, Giuseppe F, Marri L, Cuesta-Seijo JA, Trost P, Lafiandra D (2016) The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Sci 252:230–238. CrossRefPubMedGoogle Scholar
  30. Shi Y, Mowery RA, Ashley J, Hentz M, Ramirez AJ, Bilgicer B, Slunt-Brown H, Borchelt DR, Shaw BF (2012) Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding. Protein Sci 21:1197–1209. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shimbata T, Nakamura T, Vrinten P, Saito M, Yonemaru J, Seto Y, Yasuda H (2005) Mutations in wheat starch synthase II genes and PCR-based selection of a SGP-1 null line. Theor Appl Genet 111:1072–1079. CrossRefPubMedGoogle Scholar
  32. Sparla F, Falini G, Botticella E, Pirone C, Talamè V, Bovina R, Salvi S, Tuberosa R, Sestili F, Trost P (2014) New starch phenotypes produced by TILLING in barley. PLoS One 9:e107779. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Stone B, Morell MK (2009) Carbohydrate. In: Khan K, Shewry PR (eds) Wheat: chemistry and technology, 4th edn. AACC International, St. Paul, pp 299–362CrossRefGoogle Scholar
  34. Sun Q, Wu M, Bu X, Xiong L (2015) Effect of the amount and particle size of wheat fiber on the physicochemical properties and gel morphology of starches. PLoS One 10:e0128665. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Takaoka M, Watanabe S, Sassa H, Yamamori M, Nakamura T, Sasakuma T, Hirano H (1997) Structural characterization of high molecular weight starch granule-bound proteins in wheat (Triticum aestivum L.). J Agric Food Chem 45:2929–2934. CrossRefGoogle Scholar
  36. Unemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol 32:763–768CrossRefGoogle Scholar
  37. Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14:568–585. CrossRefGoogle Scholar
  38. Werner WE (1995) Ferguson plot analysis of high molecular weight glutenin subunits by capillary electrophoresis. Cereal Chem 72:248–251Google Scholar
  39. Yamamori M, Endo TR (1996) Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet 93:275–281CrossRefPubMedGoogle Scholar
  40. Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor Appl Genet 101:21–29CrossRefGoogle Scholar
  41. Yan L, Fairclough R, Bhave M (2000) A novel starch granule-bound protein in endosperm of wheat. J Cereal Sci 32:245–248CrossRefGoogle Scholar
  42. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40. CrossRefGoogle Scholar
  43. Zhao XC, Sharp PJ (1996) An improved 1-D SDS-PAGE method for the identification of three bread wheat waxy proteins. J Cereal Sci 23:191–193. CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Ermelinda Botticella
    • 1
  • Anna Pucci
    • 1
  • Francesco Sestili
    • 1
  1. 1.Department of Agriculture and Forestry SciencesUniversity of TusciaViterboItaly

Personalised recommendations