Journal of Plant Research

, Volume 131, Issue 3, pp 555–562 | Cite as

Identification, characterization and expression analysis of genes involved in steroidal saponin biosynthesis in Dracaena cambodiana

  • Jia-Hong Zhu
  • Hui-Liang Li
  • Dong Guo
  • Ying Wang
  • Hao-Fu Dai
  • Wen-Li Mei
  • Shi-Qing Peng
Regular Paper


Dracaena cambodiana is a traditional medicinal plant used for producing dragon’s blood. The plants and dragon’s blood of D. cambodiana contain a rich variety of steroidal saponins. However, little is known about steroidal saponin biosynthesis and its regulation in D. cambodiana. Here, 122 genes encoding enzymes involved in steroidal saponin biosynthesis were identified based on transcriptome data, with 29 of them containing complete open reading frames (ORF). Transcript expression analysis revealed that several genes related to steroidal saponin biosynthesis showed distinct tissue-specific expression patterns; the expression levels of genes encoding the key enzymes involved in the biosynthesis and early modification of steroidal saponins were significantly down-regulated in the stems in response to the inducer of dragon’s blood, exhibiting positive correlations with the content of steroidal saponins. These results provide insights on the steroidal saponins biosynthetic pathway and mechanisms underlying induced formation of dragon’s blood in D. cambodiana.


Dracaena cambodiana Dragon’s blood Steroidal saponin Gene expression 



This work was supported by the National Natural Science Foundation of China (Nos. 81773845; 31400297), Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (Nos. 17CXTD-15, 1630052016013) and Innovation Research Group Program of Hainan Province Natural Science Foundation (No. 2017CXTD020).

Supplementary material

10265_2017_1004_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2021 KB)


  1. Abe I, Prestwich GD (1995) Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30:231–234CrossRefPubMedGoogle Scholar
  2. Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457CrossRefPubMedGoogle Scholar
  3. Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457CrossRefPubMedGoogle Scholar
  4. Ciura J, Szeliga M, Grzesik M, Tyrka M (2017) Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in fenugreek (Trigonella foenum-graecum). Planta 245:977–991CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gao Y, Pu DB, Li RT, Li HZ (2014) Changes of steroidal saponins in the formation of Sanguis Draconis. Yunnan J Tradit Chin Med Mater Med 35:75–78Google Scholar
  6. Gupta D, Bleakley B, Gupta RK (2008) Dragon’s blood: botany, chemistry and therapeutic uses. J Ethnopharmacol 115:361–380CrossRefPubMedGoogle Scholar
  7. He L, Wang ZH, Tu PF, Hou H (2004) Advances in study on chemical constituents and pharmacological activities in plants of Dracaena Vand. ex L. Chin Tradit Herb Drugs 35:221–228Google Scholar
  8. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644CrossRefPubMedGoogle Scholar
  9. Hwang HS, Lee H, Choi YE (2015) Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis. BMC Genom 16:180CrossRefGoogle Scholar
  10. Jiang HM, Dai HF, Wang H, Wang J, Luo YP, Mei WL (2015) Antibacterial components from artificially induced Dragon’s Blood of Dracaena cambodiana. China J Chin Materia Med 40:4002–4006Google Scholar
  11. Kougan GB, Miyamoto T, Tanaka C, Paululat T, Mirjolet JF, Duchamp O, Sondengam BL, Lacaille-Dubois MA (2010) Steroidal saponins from two species of Dracaena. J Nat Prod 73:1266–1270CrossRefPubMedGoogle Scholar
  12. Moharram FA, El-Shenawy SM (2007) Antinociceptive and anti-inflammatory steroidal saponins from Dracaena ombet. Planta Med 73:1101–1106CrossRefPubMedGoogle Scholar
  13. Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchezpérez R, Møller BL, Bak S (2008) Beta-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813CrossRefPubMedGoogle Scholar
  14. Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4CrossRefPubMedGoogle Scholar
  15. Pérez-Labrada K, Brouard I, Morera C, Estévez F, Bermejo J, Rivera DG (2011) ‘Click’ synthesis of triazole-based spirostan saponin analogs. Tetrahedron 67:7713–7727CrossRefGoogle Scholar
  16. Phillips DR, Rasbery JM, Bartel B, Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314CrossRefPubMedGoogle Scholar
  17. Poralla K, Hewelt A, Prestwich GD, Abe I, Reipen I, Sprenger G (1994) A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem Sci 19:157–158CrossRefPubMedGoogle Scholar
  18. Ryder NS (1991) Squalene epoxidase as a target for the allylamines. Biochem Soc Trans 19:774–777CrossRefPubMedGoogle Scholar
  19. Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25CrossRefPubMedPubMedCentralGoogle Scholar
  20. Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42:465–476CrossRefPubMedGoogle Scholar
  21. Shen HY, Zuo WJ, Wang H, Zhao YX, Guo ZK, Luo Y, Xiao NL, Dai HF, Mei WL (2014) Steroidal saponins from dragon’s blood of Dracaena cambodiana. Fitoterapia 17:94–101CrossRefGoogle Scholar
  22. Singh P, Singh G, Bhandawat A, Singh G, Parma R, Seth R, Sharma RK (2017) Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herbtrillium govanianum. Sci Rep 7:45295CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sparg SG, Light ME, Staden JV (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243CrossRefPubMedGoogle Scholar
  24. Tapondjou LA, Ponou KB, Teponno RB, Mbiantcha M, Djoukeng JD, Nguelefack TB, Watcho P, Cadenas AG, Park HJ (2008) In vivo anti-inflammatory effect of a new steroidal saponin, mannioside A, and its derivatives isolated from Dracaena mannii. Arch Pharm Res 31:653–658CrossRefPubMedGoogle Scholar
  25. Upadhyay S, Phukan UJ, Mishra S, Shukla RK (2014) De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in asparagus racemosus. BMC Genom 15:746CrossRefGoogle Scholar
  26. Wang XH, Zhang CH, Yang LL, Gomes-Laranjo J (2011) Production of dragon’s blood in Dracaena cochinchinensis plants by inoculation of Fusarium proliferatum. Plant Sci 180:292–299CrossRefPubMedGoogle Scholar
  27. Wang X, Chen DJ, Wang YQ, Xie J (2015) De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea Composita. PLoS One 10:e0124560CrossRefPubMedPubMedCentralGoogle Scholar
  28. Xu M, Zhang YJ, Li XC, Jacob MR, Yang CR (2010) Steroidal saponins from fresh stems of Dracaena angustifolia. J Nat Prod 73:1524–1528CrossRefPubMedGoogle Scholar
  29. Zhang X, Ito Y, Liang J, Su Q, Zhang Y, Liu J, Sun W (2013) Preparative isolation and purification of five steroid saponins from Dioscorea zingiberensis, C.H.Wright by counter-current chromatography coupled with evaporative light scattering detector. J Pharm Biomed Anal 84:117–123CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zheng QA, Zhang YJ, Li HZ, Yang CR (2004) Steroidal saponins from fresh stem of Dracaena cochinchinensis. Steroids 69:111–119CrossRefPubMedGoogle Scholar
  31. Zhu JH, Cao TJ, Dai HF, Li HL, Guo D, Mei WL, Peng SQ (2016) De Novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragon’s blood. Sci Rep 6:38315CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina

Personalised recommendations