Skip to main content

Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings

Abstract

Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Balasubramanian R, Karve A, Kandasamy M, Meagher RB, Moore B (2007) A role for F-actin in hexokinase-mediated glucose signaling. Plant Physiol 145:1423–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    PubMed  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    CAS  PubMed  Google Scholar 

  • Berger F, Haseloff J, Schiefelbein J, Dolan L (1998) Positional information in root epidermis is defined during mbryogenesis and acts in domains with strict boundaries. Curr Biol 8:421–430

    CAS  PubMed  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    CAS  PubMed  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    CAS  PubMed  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    CAS  Google Scholar 

  • Collings DA, Lill AW, Himmelspach R, Wasteneys GO (2006) Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana. New Phytol 170:275–290

    CAS  PubMed  Google Scholar 

  • De Simone S, Oka Y, Nishioke N, Tadano S, Inoue Y (2000) Evidence of phytochrome mediation in the low-pH-induced root hair formation process in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings. J Plant Res 113:45–53

    Google Scholar 

  • Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Roberts K, Poethig S (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    CAS  Google Scholar 

  • Emons AMC, Derksen J (1986) Microfibrils, microtubules and microfilaments of the trichoblast of Equisetum hyemale. Acta Bot Neerl 35:311–320

    Google Scholar 

  • Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev 15:79–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gális I, Šimek P, Van Onckelen HA, Kakiuchi Y, Wabiko H (2002) Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. Plant Cell Physiol 43:939–950

    PubMed  Google Scholar 

  • Gancedo JM (2008) Early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704

    CAS  PubMed  Google Scholar 

  • Gazzarrini S, McCourt P (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol 4:387–391

    CAS  PubMed  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264

    CAS  PubMed  Google Scholar 

  • Gibson SI, Laby RJ, Kim D (2001) The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem Biophys Res Commun 280:196–203

    CAS  PubMed  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    CAS  PubMed  Google Scholar 

  • Hong JH, Cowan AK, Lee SK (2004) Glucose inhibits ACC oxidase activity and ethylene biosynthesis in ripening tomato fruit. Plant Growth Regul 43:81–87

    CAS  Google Scholar 

  • Honkanen S, Dolan L (2016) Growth regulation in tip-growing cells that develop on the epidermis. Curr Opin Plant Biol 34:77–83

    CAS  PubMed  Google Scholar 

  • Inoue Y, Hirota K (2000) Low pH-induced root hair formation in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings: determination of root hair-forming site. J Plant Res 113:245–251

    CAS  Google Scholar 

  • Inoue Y, Yamaoka K, Kimura K, Sawai K (1995) Image processing-aided simple analysis method for root hair formation in plants. Bioimages 3:31–36

    Google Scholar 

  • Inoue Y, Yamaoka K, Kimura K, Sawai K, Arai T (2000) Effect of low pH on the induction of root hair formation in young lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings. J Plant Res 113:39–44

    Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Ann Rev Plant Bio 59:365–386

    CAS  Google Scholar 

  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Chang C (2015) Mechanistic insights in ethylene perception and signal transduction. Plant Physiol 169:85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karve A, Moore BD (2009) Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth. J Exp Bot 60:4137–4149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karve A, Xia X, Moore BD (2012) Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses. Plant Physiol 158:1965–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Kieber JJ (1997) The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:277–296

    CAS  PubMed  Google Scholar 

  • Kim CM, Park SH, Je BI, Park SJ, Piao HL, Eun MY, Dolan L, Han CD (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  • León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    PubMed  Google Scholar 

  • Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413

    CAS  PubMed  Google Scholar 

  • Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome Res 16:414–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M, Brechenmacher L, Cheng J, Xu D, Stacey G (2010) Root hair systems biology. Trends Plant Sci 15:641–650

    CAS  PubMed  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol 106:1335–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • McFarlane HE, Döring A, Persson S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94

    CAS  PubMed  Google Scholar 

  • Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502

    PubMed  PubMed Central  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CS, Friml J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    CAS  PubMed  Google Scholar 

  • Narukawa M, Watanabe K, Inoue Y (2010) Light-induced root hair formation in lettuce (Lactuca sativa L. cv. Grand Rapids) roots at low pH is brought by chlorogenic acid synthesis and sugar. J Plant Res 123:789–799

    PubMed  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs: Specialized tubular cells extending root surfaces. Bot Rev 62:1–40

    Google Scholar 

  • Pietra S, Lang P, Grebe M (2015) SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana. Physiol Plant 153:440–453

    CAS  PubMed  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    CAS  PubMed  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    CAS  PubMed  Google Scholar 

  • Rowe JH, Topping JF, Liu J, Lindsey K (2016) Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol 211:225–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858

    CAS  PubMed  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen J (2014) Master regulators in plant glucose signaling networks. J Plant Biol 57:67–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279

    CAS  PubMed  Google Scholar 

  • Song SH, Vieille C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84:55–62

    CAS  PubMed  Google Scholar 

  • Stonier T, Macgladrie K, Shaw G (1979) Studies on auxin protectors XIV. Chlorogenic acid, a low molecular weight auxin protector in sunflower. Plant Cell Environ 2:79–82

    Google Scholar 

  • Sulmon C, Gouesbet G, El Amrani A, Couée I (2007) Involvement of the ethylene-signalling pathway in sugar-induced tolerance to the herbicide atrazine in Arabidopsis thaliana seedlings. J Plant Physiol 164:1083–1092

    CAS  PubMed  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Inoue Y (2008) Stage-specific crosstalk between light, auxin, and ethylene during low-pH-induced root hair formation in lettuce (Lactuca sativa L.) seedlings. Plant Growth Regul 56:31–41

    CAS  Google Scholar 

  • Takahashi H, Hirota K, Kawahara A, Hayakawa E, Inoue Y (2003a) Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:350–359

    CAS  PubMed  Google Scholar 

  • Takahashi H, Iwasa T, Shinkawa T, Kawahara A, Kurusu T, Inoue Y (2003b) Isolation and characterization of the ACC synthase genes from lettuce (Lactuca sativa L.), and the involvement in low pH-induced root hair initiation. Plant Cell Physiol 44:62–69

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kawahara A, Inoue Y (2003c) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:932–940

    CAS  PubMed  Google Scholar 

  • Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948

    CAS  PubMed  Google Scholar 

  • Timmers AC, Vallotton P, Heym C, Menzel D (2007) Microtubule dynamics in root hairs of Medicago truncatula. Eur J Cell Biol 86:69–83

    CAS  PubMed  Google Scholar 

  • Van Bruaene N, Joss G, Van Oostveldt P (2004) Reorganization and in vivo dynamics of microtubules during Arabidopsis root hair development. Plant Physiol 136:3905–3919

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Cnops G, Vanderhaeghen R, De Block S, Van Montagu M, Van Lijsebettens M (2001) AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol 126:575–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AK, Pickett FB, Turner JC, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383

    CAS  PubMed  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yuan K, Wysocka-Diller J (2006) Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J Exp Bot 57:3359–3367

    CAS  PubMed  Google Scholar 

  • Zenk MH, Muller G (1963) In vivo destruction of exogenously applied indol-3-acetic acid as influenced by naturally occurring phenolic acids. Nature 200:761–763

    CAS  Google Scholar 

  • Zhang S, Huang L, Yan A, Liu Y, Liu B, Yu C, Zhang A, Schiefelbein J, Gan Y (2016) Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis. J Exp Bot 67:6363–6372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Y. Inoue in Tokyo University of Science for providing lettuce seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Takahashi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harigaya, W., Takahashi, H. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings. J Plant Res 131, 543–554 (2018). https://doi.org/10.1007/s10265-017-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-1003-8

Keywords

  • Cortical microtubule
  • Ethylene
  • Glucose
  • Lettuce (Lactuca sativa L.)
  • Root hair