Advertisement

Journal of Plant Research

, Volume 131, Issue 2, pp 319–329 | Cite as

Molecular characterization of cytosolic cysteine synthase in Mimosa pudica

  • Md. Harun-Ur- Rashid
  • Hironori Iwasaki
  • Shigeki Oogai
  • Masakazu Fukuta
  • Shahanaz Parveen
  • Md. Amzad Hossain
  • Toyoaki Anai
  • Hirosuke Oku
Regular Paper

Abstract

In the cysteine and mimosine biosynthesis process, O-acetyl-l-serine (OAS) is the common substrate. In the presence of O-acetylserine (thiol) lyase (OASTL, cysteine synthase) the reaction of OAS with sulfide produces cysteine, while with 3-hydroxy-4-pyridone (3H4P) produces mimosine. The enzyme OASTL can either catalyze Cys synthesis or both Cys and mimosine. A cDNA for cytosolic OASTL was cloned from M. pudica for the first time containing 1,410 bp nucleotides. The purified protein product from overexpressed bacterial cells produced Cys only, but not mimosine, indicating it is Cys specific. Kinetic studies revealed that pH and temperature optima for Cys production were 6.5 and 50 °C, respectively. The measured Km, Kcat, and Kcat Km−1 values were 159 ± 21 µM, 33.56 s−1, and 211.07 mM−1s−1 for OAS and 252 ± 25 µM, 32.99 s−1, and 130.91 mM−1s−1 for Na2S according to the in vitro Cys assay. The Cy-OASTL of Mimosa pudica is specific to Cys production, although it contains sensory roles in sulfur assimilation and the reduction network in the intracellular environment of M. pudica.

Keywords

α-Aminoacrylate Cysteine 2,5-Dimethyl-3-pyridinol O-acetylserine (thiol) lyase Mimosine 

Notes

Acknowledgements

We are grateful to Dr. Shinichi Gima of the Instrumental Research Center, University of the Ryukyus, and Dr. Michael Chandro Roy of the Okinawa Institute of Science and Technology for providing technical assistance during the LC–MS/MS analyses. We sincerely thank to Dr. Rafiq Islam (Professor, Department of Natural Sciences, Northwest Missouri State University) for useful discussion and necessary corrections of our manuscript.

Supplementary material

10265_2017_986_MOESM1_ESM.docx (615 kb)
Supplementary material 1 (DOCX 615 KB)

References

  1. Birke H, De Kok LJ, Wirtz M, Hell R (2015) The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis. Plant Cell Physiol 56:358–367CrossRefPubMedGoogle Scholar
  2. Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813CrossRefPubMedGoogle Scholar
  3. Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773CrossRefPubMedGoogle Scholar
  4. Burkhard P, Tai CH, Jansonius JN, Cook PF (2000) Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: structure of the enzyme with chloride bound. J Mol Biol 303:279–286CrossRefPubMedGoogle Scholar
  5. Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S, Mozzarelli A (2005) Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci Publ Protein Soc 14:2115–2124CrossRefGoogle Scholar
  6. Claus MT, Zocher GE, Maier TH, Schulz GE (2005) Structure of the O-acetylserine sulfhydrylase isoenzyme CysM from Escherichia coli. BioChemistry 44:8620–8626CrossRefPubMedGoogle Scholar
  7. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants–structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245CrossRefPubMedGoogle Scholar
  8. Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73:383–415CrossRefPubMedGoogle Scholar
  9. Feldman-Salit A, Wirtz M, Hell R, Wade RC (2009) A mechanistic model of the cysteine synthase complex. J Mol Biol 386:37–59CrossRefPubMedGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J org Evolut 39:783–791CrossRefGoogle Scholar
  11. Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633CrossRefPubMedPubMedCentralGoogle Scholar
  12. Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067CrossRefPubMedPubMedCentralGoogle Scholar
  13. Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hell R, Wirtz M (2008) Metabolism of cysteine in plants and phototrophic bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer Netherlands, Dordrecht, pp 59–91CrossRefGoogle Scholar
  15. Ikegami F, Mizuno M, Kihara M, Murakoshi I (1990) Enzymatic synthesis of the thyrotoxic amino acid mimosine by cysteine synthase. Phytochemistry 29:3461–3465CrossRefGoogle Scholar
  16. Inoue K, Noji M, Saito K (1999) Determination of the sites required for the allosteric inhibition of serine acetyltransferase by l-cysteine in plants. Eur J Biochem 266:220–227CrossRefPubMedGoogle Scholar
  17. Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601CrossRefPubMedGoogle Scholar
  18. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999a) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706CrossRefGoogle Scholar
  19. Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999b) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324CrossRefGoogle Scholar
  20. Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32:349–367CrossRefPubMedGoogle Scholar
  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  22. Kumaran S, Jez JM (2007) Thermodynamics of the interaction between O-acetylserine sulfhydrylase and the C-terminus of serine acetyltransferase. BioChemistry 46:5586–5594CrossRefPubMedGoogle Scholar
  23. Kuske CR, Ticknor LO, Guzman E, Gurley LR, Valdez JG, Thompson ME, Jackson PJ (1994) Purification and characterization of O-acetylserine sulfhydrylase isoenzymes from Datura innoxia. J Biol Chem 269:6223–6232PubMedGoogle Scholar
  24. Lafaye A, Junot C, Pereira Y, Lagniel G, Tabet JC, Ezan E, Labarre J (2005) Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem 280:24723–24730CrossRefPubMedGoogle Scholar
  25. Murakoshi I, Kuramoto H, Haginiwa J, Fowden L (1972) The enzymic synthesis of β-substituted alanines. Phytochemistry 11:177–182CrossRefGoogle Scholar
  26. Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25CrossRefGoogle Scholar
  27. Ngo H, Harris R, Kimmich N, Casino P, Niks D, Blumenstein L, Barends TR, Kulik V, Weyand M, Schlichting I, Dunn MF (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex. BioChemistry 46:7713–7727CrossRefPubMedGoogle Scholar
  28. Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745CrossRefPubMedGoogle Scholar
  29. Pilon-Smits EAH, Pilon M (2006) Sulfur Metabolism in Plastids. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer Netherlands, Dordrecht, pp 387–402CrossRefGoogle Scholar
  30. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85CrossRefPubMedGoogle Scholar
  31. Renosto F, Patel HC, Martin RL, Thomassian C, Zimmerman G, Segel IH (1993) ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf. Arch Biochem Biophys 307:272–285CrossRefPubMedGoogle Scholar
  32. Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195CrossRefPubMedGoogle Scholar
  33. Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450CrossRefPubMedPubMedCentralGoogle Scholar
  34. Saito K, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Isolation and characterization of cDNA that encodes a putative mitochondrion-localizing isoform of cysteine synthase (O-acetylserine(thiol)-lyase) from Spinacia oleracea. J Biol Chem 269:28187–28192PubMedGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  36. Scharer MA, Eliot AC, Grutter MG, Capitani G (2011) Structural basis for reduced activity of 1-aminocyclopropane-1-carboxylate synthase affected by a mutation linked to andromonoecy. FEBS lett 585:111–114CrossRefPubMedGoogle Scholar
  37. Simanshu DK, Savithri HS, Murthy MR (2006) Crystal structures of Salmonella typhimurium biodegradative threonine deaminase and its complex with CMP provide structural insights into ligand-induced oligomerization and enzyme activation. J Biol Chem 281:39630–39641CrossRefPubMedGoogle Scholar
  38. Tai C-H, Cook PF (2006) O-acetylserine sulfhydrylase. Adv Enzym Relat Areas Mol Biol 74:185–234Google Scholar
  39. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184CrossRefPubMedGoogle Scholar
  40. Warrilow AGS, Hawkesford MJ (2000) Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J Exp Bot 51:985–993CrossRefPubMedGoogle Scholar
  41. Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163:273–286CrossRefPubMedGoogle Scholar
  43. Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798CrossRefPubMedGoogle Scholar
  44. Wirtz M, Birke H, Heeg C, Müller C, Hosp F, Throm C, König S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010a) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 285:32810–32817CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wirtz M, Heeg C, Samami AA, Ruppert T, Hell R (2010b) Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include N(α)-terminal acetylation. Amino Acids 39:1077–1086CrossRefPubMedGoogle Scholar
  46. Wirtz M, Beard KFM, Lee CP, Boltz A, Schwarzlaender M, Fuchs C, Meyer AJ, Heeg C, Sweetlove LJ, Ratcliffe RG, Hell R (2012) Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants. J Biol Chem 287:27941–27947CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yafuso JT, Negi VS, Bingham JP, Borthakur D (2014) An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase. Appl Biochem Biotechnol 173:1157–1168CrossRefPubMedGoogle Scholar
  48. Yi H, Juergens M, Jez JM (2012) Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants. Plant Cell 24:2696–2706CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. Academic Press, New YorkCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Md. Harun-Ur- Rashid
    • 1
    • 5
  • Hironori Iwasaki
    • 3
  • Shigeki Oogai
    • 1
  • Masakazu Fukuta
    • 2
  • Shahanaz Parveen
    • 1
    • 5
  • Md. Amzad Hossain
    • 2
  • Toyoaki Anai
    • 4
  • Hirosuke Oku
    • 3
  1. 1.The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Graduate School of AgricultureUniversity of the RyukyusOkinawaJapan
  3. 3.Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
  4. 4.Faculty of AgricultureSaga UniversitySagaJapan
  5. 5.Faculty of AgricultureSher-e-Bangla Agricultural UniversityDhakaBangladesh

Personalised recommendations