Journal of Plant Research

, Volume 131, Issue 2, pp 307–317 | Cite as

UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum

  • Hideyuki Honta
  • Takuya Inamura
  • Teruko Konishi
  • Shinobu Satoh
  • Hiroaki Iwai
Regular Paper


Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.


UDP-arabinopyranose mutase Rhamnogalacturonan-I Arabinoxyloglucan Nicotiana tabacum 



This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (18075004 to H. Iwai), a Grant-in-Aid for Scientific Research on Innovative Areas (24114006 to S. Satoh and H. Iwai).

Supplementary material

10265_2017_985_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3897 KB)


  1. Aya K, Suzuki G, Suwabe K, Hobo T, Takahashi H, Shiono K, Yano K, Tsutsumi N, Nakazono M, Nagamura Y, Matsuoka M, Watanabe M (2011) Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 6:e26162CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, Clark MA, Simmons MP. Bedinger P, Goff SA, Ringli C, Keller B (2003) Whole-genome comparison of leucine-rich repeat extensions in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol 131:1313–1326CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bocca SN, Kissen R, Rojas-Beltrán JA, Noël F, Gebhardt C, Moreno S, du Jardin P, Tandecarz JS (1999) Molecular cloning and characterization of the enzyme UDP-glucose: protein transglucosylase from potato. This paper is specially dedicated to the memory of Dr Juana S. Tandecarz, deceased on December 10, 1999. Plant Physiol Biochem 37:809–819CrossRefPubMedGoogle Scholar
  4. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burget EG, Verma R, Mølhøj M, Reiter WD (2003) The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15:523–531CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30CrossRefPubMedGoogle Scholar
  7. Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–1537CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Pino V, Borán M, Norambuena L, González M, Reyes F, Orellana A, Moreno S (2007) Complex formation regulates the glycosylation of the reversibly glycosylated polypeptide. Planta 226:335–345CrossRefPubMedGoogle Scholar
  9. Delgado IJ, Wang Z, de Rocher A, Keegstra K, Raikhel NV (1998) Cloning and characterization of AtRGP1. A reversibly autoglycosylated Arabidopsis protein implicated in cell wall biosynthesis. Plant Physiol 116:1339–1350CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dhugga KS, Ulvskov P, Gallagher SR, Ray PM (1991) Plant polypeptides reversibly glycosylated by UDP-glucose. Possible components of Golgi beta-glucan synthase in pea cells. J Biol Chem 266:21977–21984PubMedGoogle Scholar
  11. Dhugga KS, Tiwari SC, Ray PM (1997) A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc Natl Acad Sci USA 94:7679–7684CrossRefPubMedPubMedCentralGoogle Scholar
  12. Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N (2006) Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. Plant Physiol 142:1480–1492CrossRefPubMedPubMedCentralGoogle Scholar
  13. Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hancock CN, Kent L, McClure BA (2005) The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J 43:716–723CrossRefPubMedGoogle Scholar
  15. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280CrossRefPubMedPubMedCentralGoogle Scholar
  16. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  17. Huang L, Cao J, Zhang A, Ye Y, Zhang Y, Liu T (2009a) The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot 60:301–313CrossRefPubMedGoogle Scholar
  18. Huang L, Cao J, Zhang A, Ye Y, Zhang Y, Liu T (2009b) BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation. Ann Bot 104:1339–1351CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ishii T, Konishi T, Ito Y, Ono H, Ohnishi-Kameyama M, Maeda I (2005) A beta-(1→3)-arabinopyranosyltransferase that transfers a single arabinopyranose onto arabino-oligosaccharides in mung bean (Vigna radiata) hypocotyls. Phytochem 66:2418–2425CrossRefGoogle Scholar
  20. Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells. Planta 213:907–915CrossRefPubMedGoogle Scholar
  21. Iwai H, Masaoka N, Ishii T, Satoh S (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci USA 99:16319–16324CrossRefGoogle Scholar
  22. Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci USA 100:11783–11788CrossRefPubMedPubMedCentralGoogle Scholar
  24. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  25. Kong Y, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li X, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O’Neill MA (2015) Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. Plant Physiol 167:1296–1306CrossRefPubMedPubMedCentralGoogle Scholar
  26. Konishi T, Ono H, Ohnishi-Kameyama M, Kaneko S, Ishii T (2006) Identification of a mung bean arabinofuranosyltransferase that transfers arabinofuranosyl residues onto (1,5)-linked alpha-l-arabino-oligosaccharides. Plant Physiol 141:1098–1105CrossRefPubMedPubMedCentralGoogle Scholar
  27. Konishi T, Takeda T, Miyazaki Y, Ohnishi-Kameyama M, Hayashi T, O’Neill MA, Ishii T (2007) A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiol 3:345–354CrossRefGoogle Scholar
  28. Konishi T, Ohnishi-Kameyama M, Funane K, Miyazaki Y, Konishi T, Ishii T (2010) An arginyl residue in rice UDP-arabinopyranose mutase is required for catalytic activity and autoglycosylation. Carbohydr Res 345:787–791CrossRefPubMedGoogle Scholar
  29. Konishi T, Aohara T, Igasaki T, Hayashi N, Miyazaki Y, Takahashi A, Hirochika H, Iwai H, Satoh S, Ishii T (2011) Down-regulation of UDP-arabinopyranose mutase reduces the proportion of arabinofuranose present in rice cell walls. Phytochemistry 72:1962–1968CrossRefPubMedGoogle Scholar
  30. Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y (2016) Metabolism of L-arabinose in plants. J Plant Res 129:781–792CrossRefPubMedGoogle Scholar
  31. Langeveld SM, Vennik M, Kottenhagen M, Van Wijk R, Buijk A, Kijne JW, de Pater S (2002) Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides. Plant Physiol 129:278–289CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li YQ, Moscatelli A, Cai G, Cresti M (1997) Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. Int Rev Cytol 176:133–199CrossRefPubMedGoogle Scholar
  33. Li YQ, Mareck A, Faleri C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740CrossRefPubMedGoogle Scholar
  34. Lord E (2000) Adhesion and cell movement during pollination: cherchez la femme. Trends Plant Sci 5:368–373CrossRefPubMedGoogle Scholar
  35. Louvet R, Cavel E, Gutierrez L, Guénin S, Roger D, Gillet F, Guerineau F, Pelloux J (2006) Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 224:782–791CrossRefPubMedGoogle Scholar
  36. Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WGT, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60CrossRefPubMedPubMedCentralGoogle Scholar
  37. Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495CrossRefPubMedGoogle Scholar
  38. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277CrossRefPubMedGoogle Scholar
  39. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  40. Rautengarten C, Ebert B, Herter T, Petzold CJ, Ishii T, Mukhopadhyay A, Usadel B, Scheller HV (2011) The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis. Plant Cell 23:1373–1390CrossRefPubMedPubMedCentralGoogle Scholar
  41. Reiter WD, Chapple C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12:335–345CrossRefPubMedGoogle Scholar
  42. Rhee SY, Osborne E, Poindexter PD, Somerville CR (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133:1170–1180CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967CrossRefPubMedGoogle Scholar
  44. Rothschild A, Tandecarz JS (1996) Udp-glucose-protein transglucosylase in developing maize endosperm. Plant Sci 97:119–127CrossRefGoogle Scholar
  45. Rubinstein AL, Broadwater AH, Lowrey KB, Bedinger PA (1995) Pex1, a pollen-specific gene with an extensin-like domain. Proc Natl Acad Sci USA 92:3086–3090CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell 17:1788–1800CrossRefPubMedPubMedCentralGoogle Scholar
  47. Satoh S (1998) Functions of the cell wall in the interactions of plant cells: analysis using carrot cultured cells. Plant Cell Physiol 39:361–368CrossRefGoogle Scholar
  48. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefPubMedGoogle Scholar
  49. Selth LA, Dogra SC, Rasheed MS, Randles JW, Rezaian MA (2006) Identification and characterization of a host reversibly glycosylated peptide that interacts with the Tomato leaf curl virus V1 protein. Plant Mol Biol 61(1–2):297–310CrossRefPubMedGoogle Scholar
  50. Singh DG, Lomako J, Lomako WM, Whelan WJ, Meyer HE, Serwe M, Metzger JW (1995) β-Glucosylarginine: a new glucose-protein bond in a self-glucosylating protein from sweet corn. FEBS Lett 376:61–64CrossRefPubMedGoogle Scholar
  51. Smallwood M, Yates EA, Willats WGT, Martin H, Knox JP (1996) Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198:452–459CrossRefGoogle Scholar
  52. Sumiyoshi M, Inamura T, Nakamura A, Aohara T, Ishii T, Satoh S, Iwai H (2015) UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa). Plant Cell Physiol 56:232–241CrossRefPubMedGoogle Scholar
  53. Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91CrossRefPubMedGoogle Scholar
  54. Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344:1858–1862CrossRefPubMedGoogle Scholar
  55. Vierhuis E, York WS, Kolli VS, Vincken J, Schols HA, Van Alebeek GW, Voragen AG (2001) Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 332:285–297CrossRefPubMedGoogle Scholar
  56. Vignon MR, Heux L, Malainine ME, Mahrouz M (2004) Arabinan–cellulose composite in Opuntia ficus-indica prickly pear spines. Carbohydr Res 339:123–131CrossRefPubMedGoogle Scholar
  57. Willats WG, Marcus SE, Knox JP (1998) Generation of monoclonal antibody specific to (1–>5)-alpha-L-arabinan. Carbohydr Res 308:149–152CrossRefPubMedGoogle Scholar
  58. Willats WG, Steele-King CG, Marcus SE, Knox JP (1999) Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J 20:619–628CrossRefPubMedGoogle Scholar
  59. Wu AM, Ling C, Liu JY (2006) Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol 163:426–435CrossRefPubMedGoogle Scholar
  60. Yates EA, Valdor JF, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139CrossRefPubMedGoogle Scholar
  61. York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 285:99–128CrossRefPubMedGoogle Scholar
  62. Zhang Q, Huang L, Liu T, Yu X, Cao J (2008) Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep 27:1207–1215CrossRefPubMedGoogle Scholar
  63. Zhao GR, Liu JY, Du XM (2001) Molecular cloning and characterization of cotton cDNAs expressed in developing fiber cells. Biosci Biotechnol Biochem 65:2789–2793CrossRefPubMedGoogle Scholar
  64. Zhao GR, Liu JY (2002) Isolation of a cotton RGP gene: a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochim Biophys Acta 1574: 370–374CrossRefPubMedGoogle Scholar
  65. Zykwinska AW, Ralet MC, Garnier CD, Thibault JF (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Hideyuki Honta
    • 1
  • Takuya Inamura
    • 1
  • Teruko Konishi
    • 2
  • Shinobu Satoh
    • 1
  • Hiroaki Iwai
    • 1
  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Department of Bioscience and Biotechnology, Faculty of AgricultureUniversity of the RyukyusNishiharaJapan

Personalised recommendations