Advertisement

Journal of Plant Research

, Volume 131, Issue 2, pp 297–305 | Cite as

Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation

  • Manami Takeuchi
  • Takahiro Kegasa
  • Atsushi Watanabe
  • Miho Tamura
  • Yuji Tsutsumi
Regular Paper
  • 526 Downloads

Abstract

The mechanism of monolignol transportation from the cytosol to the apoplast is still unclear despite being an essential step of lignification. Recently, ATP-binding cassette (ABC) transporters were suggested to be involved in monolignol transport. However, there are no reliable clues to the transporters of the major lignin monomers coniferyl and synapyl alcohol. In this study, the lignification progress of Arabidopsis cultured cells during tracheary element differentiation was monitored. The expression of selected transporter genes, as well as lignification and cell-wall formation related genes as references, in differentiating cultured cell samples harvested at 2-day intervals was analyzed by real-time PCR and the data were statistically processed. The cell wall formation transcription factor MYB46, programmed-cell death related gene XCP1 and lignin polymerization peroxidase AtPrx25 were classified into the same cluster. Furthermore, the cluster closest to the abovementioned cluster contained the lignin synthesis transcription factor MYB58 and the Arabidopsis ABC transporters ABCG11, ABCG22, ABCG36 and ABCG29. This result suggested that these four ABC transporters may be involved in lignification. In the expression analysis, unexpectedly, the lignification-related genes CAD5 and C4H were not included in the same cluster as MYB58 and AtPrx25. The expression data also suggested that the lignification of tracheary elements in the culture, where lignification ratio finally reached to around 40%, continued after cell death because lignification actively progressed after programmed cell death-related gene started to be expressed.

Keywords

Arabidopsis cultured cell ATP-binding cassette transporter Heatmap Lignification Real-time PCR Tracheary element 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Scientific Research (B) Grant number JP26292097 (Y.T.), and JSPS KAKENHI Exploratory Research Grant number JP15K14774 (Y.T.).

Supplementary material

10265_2017_979_MOESM1_ESM.pdf (108 kb)
Supplementary material 1 (PDF 107 KB)

References

  1. Alejandro S, Lee Y, Tohge T et al (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22:1207–1212. doi: 10.1016/j.cub.2012.04.064 CrossRefPubMedGoogle Scholar
  2. Axelos M, Curie C, Mazzolini L et al (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30:123–128Google Scholar
  3. Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115:1053–1074. doi: 10.1093/aob/mcv046 CrossRefPubMedPubMedCentralGoogle Scholar
  4. BellLelong DA, Cusumano JC, Meyer K, Chapple C (1997) Cinnamate-4-hydroxylase expression in Arabidopsis—regulation in response to development and the environment. Plant Phys 113:729–738. doi: 10.1104/pp.113.3.729 CrossRefGoogle Scholar
  5. Bird D, Beisson F, Brigham A et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498. doi: 10.1111/j.1365-313X.2007.03252.x CrossRefPubMedGoogle Scholar
  6. Boerjan W, Ralph J, Baucher M (2003) LIGNIN BIOSYNTHESIS. Annu Rev Plant Biol 54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938 CrossRefPubMedGoogle Scholar
  7. Campe R, Langenbach C, Leissing F et al (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytol 209:294–306. doi: 10.1111/nph.13582 CrossRefPubMedGoogle Scholar
  8. Church DL, Galston a W (1988) 4-Coumarate:coenzyme A ligase and isoperoxidase expression in Zinnia mesophyll cells induced to differentiate into tracheary elements. Plant Physiol 88:679–684. doi: 10.1104/pp.88.3.679 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dittgen J, Sa C, Hou B et al (2006) Plant fungal infection process Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Society 18:731–746. doi: 10.1105/tpc.105.038372.1 Google Scholar
  10. Ehlting J, Mattheus N, Aeschliman DS et al (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640. doi: 10.1111/j.1365-313X.2005.02403.x CrossRefPubMedGoogle Scholar
  11. Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60. doi: 10.1104/pp.65.1.57 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155:423–430CrossRefPubMedGoogle Scholar
  13. Hosokawa M (2001) Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 42:959–968. doi: 10.1093/pcp/pce124 CrossRefPubMedGoogle Scholar
  14. Kaneda M, Schuetz M, Lin BSP et al (2011) ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 62:2063–2077. doi:  10.1093/jxb/erq416 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kim DY, Bovet L, Maeshima M et al (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218. doi: 10.1111/j.1365-313X.2007.03044.x CrossRefPubMedGoogle Scholar
  16. Ko J-H, Kim W-C, Han K-H (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J 60:649–665. doi: 10.1111/j.1365-313X.2009.03989.x CrossRefPubMedGoogle Scholar
  17. Kubo M, Udagawa M, Nishikubo N et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860. doi: 10.1101/gad.1331305 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67:885–894. doi: 10.1111/j.1365-313X.2011.04641.x CrossRefPubMedGoogle Scholar
  19. Liu CJ, Miao YC, Zhang KW (2011) Sequestration and transport of lignin monomeric precursors. Molecules 16:710–727. doi: 10.3390/molecules16010710 CrossRefPubMedGoogle Scholar
  20. Lu X, Dittgen J, Piślewska-Bednarek M et al (2015) Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways. Plant Physiol 168:814–827. doi: 10.1104/pp.15.00182 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Miao Y-C, Liu C-J (2010) ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc Natl Acad Sci USA 107:22728–22733. doi: 10.1073/pnas.1007747108 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nilsson R, Bernfur K, Gustavsson N et al (2010) Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation. Mol Cell Proteomics 9:368–387. doi: 10.1074/mcp.M900289-MCP200 CrossRefPubMedGoogle Scholar
  23. Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036. doi: 10.1104/pp.104.052613 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Panikashvili D, Savaldi-Goldstein S, Mandel T et al (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360. doi: 10.1104/pp.107.105676 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Panikashvili D, Shi JX, Bocobza S et al (2010) The arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant 3:563–575. doi: 10.1093/mp/ssp103 CrossRefPubMedGoogle Scholar
  26. Pesquet E, Zhang B, Gorzsas A et al (2013) Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell 25:1314–1328. doi: 10.1105/tpc.113.110593 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schilmiller AL, Stout J, Weng JK et al (2009) Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60:771–782. doi: 10.1111/j.1365-313X.2009.03996.x CrossRefPubMedGoogle Scholar
  28. Shigeto J, Kiyonaga Y, Fujita K et al (2013) Putative cationic cell-wall-bound peroxidase homologues in arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification. J Agric Food Chem 61:3781–3788. doi: 10.1021/jf400426g CrossRefPubMedGoogle Scholar
  29. Shigeto J, Nagano M, Fujita K, Tsutsumi Y (2014) Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification. PLoS One. doi: 10.1371/journal.pone.0105332 PubMedPubMedCentralGoogle Scholar
  30. Shigeto J, Itoh Y, Hirao S et al (2015) Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. J Integr Plant Biol 57:349–356. doi: 10.1111/jipb.12334 CrossRefPubMedGoogle Scholar
  31. Sibout R, Eudes A, Pollet B et al (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol 132:848–860. doi: 10.1104/pp.103.021048 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sibout R, Eudes A, Mouille G et al (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076. doi: 10.1105/tpc.105.030767 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Smith R a, Schuetz M, Roach M et al (2013) Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous. Plant Cell 25:3988–3999. doi: 10.1105/tpc.113.117176 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007. doi: 10.1105/tpc.109.065821 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sze H, Schumacher K, Müller ML et al (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–161. doi: 10.1016/S1360-1385(02)02240-9 CrossRefPubMedGoogle Scholar
  36. Tokunaga N, Sakakibara N, Umezawa T et al (2005) Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 46:224–232. doi: 10.1093/pcp/pci017 CrossRefPubMedGoogle Scholar
  37. Tsuyama T, Kawai R, Shitan N et al (2013) Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants. Plant Physiol 162:918–926. doi: 10.1104/pp.113.214957 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Underwood W, Somerville SC (2013) Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter. Proc Natl Acad Sci USA 110:12492–12497. doi: 10.1073/pnas.1218701110 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhao J, Liu J, Meng F et al (2015) ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis. J Integr Plant Biol. doi: 10.1111/jipb.12379 PubMedCentralGoogle Scholar
  40. Zhong R, Richardson EA, Ye Z (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792. doi: 10.1105/tpc.107.053678 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zhou J, Lee C, Zhong R, Ye Z-H (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266. doi: 10.1105/tpc.108.063321 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Manami Takeuchi
    • 1
  • Takahiro Kegasa
    • 2
    • 3
  • Atsushi Watanabe
    • 4
  • Miho Tamura
    • 4
  • Yuji Tsutsumi
    • 4
  1. 1.Department of Agro-environmental Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Department of Bioresource and Bioenvironment, School of AgricultureKyushu UniversityFukuokaJapan
  3. 3.Research Institute for Sustainable Humanosphere (RISH)Kyoto UniversityKyotoJapan
  4. 4.Faculty of AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations