Journal of Plant Research

, Volume 131, Issue 1, pp 77–89 | Cite as

The role of triploids in the origin and evolution of polyploids of Turnera sidoides complex (Passifloraceae, Turneroideae)

  • I. Evelin Kovalsky
  • Juan M. Roggero Luque
  • Gabriela Elías
  • Silvia A. Fernández
  • Viviana G. Solís Neffa
Regular Paper


Triploids can play an important role in polyploid evolution. However, their frequent sterility is an obstacle for the origin and establishment of neotetraploids. Here we analyzed the microsporogenesis of triploids (x = 7) and the crossability among cytotypes of Turnera sidoides, aiming to test the impact of triploids on the origin and demographic establishment of tetraploids in natural populations. Triploids of T. sidoides exhibit irregular meiotic behavior. The high frequency of monovalents and of trivalents with non-convergent orientations results in unbalanced and/or non-viable male gametes. In spite of abnormalities in chromosome pairing and unbalanced chromosome segregation, triploids are not completely sterile and yielded up to 67% of viable pollen. Triploids that originated by the fusion of 2n × n gametes of the same taxon showed more regular meiotic behavior and higher fertility than triploids from the contact zone of diploids and tetraploids or triploids of hybrid origin. The reproductive isolation of T. sidoides cytotypes of different ploidy level is not strict and the ‘triploid block’ may be overcome occasionally. Triploids of T. sidoides produce diploid and triploid progeny suggesting that new generations of polyploids could originate from crosses between triploids or from backcrosses with diploids. The capability of T. sidoides to multiply asexually by rhizomes, would enhance the likelihood that a low frequency of neopolyploids can be originated and maintained in natural populations of T. sidoides.


Cytotype crossability Microsporogenesis Polyploidy Triploids 



This research was supported by grants of Agencia Nacional de Promoción Científica, Tecnológica y de Innovación (ANPCyT-FONCyT, PICT 2007-1329 and PICT 2012-1812), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 11220120100192CO) and Secretaría General de Ciencia y Técnica (Universidad Nacional del Nordeste, PI-004/14). I.E. Kovalsky and S.A. Fernández are Fellows of the National Research Council of Argentina (CONICET). V.G. Solís Neffa is a member of the Carrera del Investigador Científico of CONICET.


  1. Arbo MM (1985) Taxonomic notes in South American Turneraceae (in Spanish). Candollea 40:175–191Google Scholar
  2. Arbo MM, Fernández A (1983) Taxonomic position, cytology and palynology of three ploidy levels of Turnera subulata Smith (in Spanish). Bonplandia 5:111–226Google Scholar
  3. Arbo MM, Fernández A (1987) Intra and interspecific crosses in Turnera, Serie Canaligerae (in Spanish). Bonplandia 6:23–38Google Scholar
  4. Brandham PE (1982) Inter-embryo competition in the progeny of autotriploid Aloineae (Liliaceae). Genetica 59:29–42CrossRefGoogle Scholar
  5. Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22CrossRefGoogle Scholar
  6. Brownfield L, Köhler C (2011) 2n gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668CrossRefPubMedGoogle Scholar
  7. Burton TL, Husband BC (2000) Fitness differences among diploids and tetraploids and their triploid progeny in Chamerion angustifolium (Onagraceae): mechanisms of inviability and implications for polyploid evolution. Evol Int J Org Evol 54:1182–1191CrossRefGoogle Scholar
  8. Clark MS, Wall WJ (1996) Chromosomes. The complex code. Chapman and Hall, LondonCrossRefGoogle Scholar
  9. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846CrossRefPubMedGoogle Scholar
  10. Costa JY, Forni-Martins ER (2004) A triploid cytotype of Echinodorus tennellus. Aqua Bot 79:325–332CrossRefGoogle Scholar
  11. De Wet JMJ (1980) Origins of polyploids. In: Lewis WH (ed) Polyploidy, biological relevance. Plenum Press, New York, pp 3–16Google Scholar
  12. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Accessed 11 Nov 2014
  13. Elías G (2010) Dinámica de una zona de contacto diploide-tetraploide de Turnera sidoides subsp. pinnatifida (Turneraceae). Dissertation, Universidad Nacional de TucumánGoogle Scholar
  14. Elías G, Solís Neffa VG (2008) Cytogenetic studies in triploids from a diploid-tetraploid contact zone of Turnera sidoides subsp. pinnatifida (in Spanish). JBAG XIX(Supplement):107Google Scholar
  15. Elías G, Sartor M, Solís Neffa VG (2011) Patterns of cytotype variation of Turnera sidoides subsp. pinnatifida (Turneraceae) in mountain ranges of central Argentina. J Plant Res 124:25–34CrossRefPubMedGoogle Scholar
  16. Erilova A, Brownfield L, Exner V, Rosa M, Twell D (2009) Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5:e1000663. doi: 10.1371/journal.pgen.1000663 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Felber F, Bever JD (1997) Effect of triploid fitness on the coexistence of diploids and tetraploids. Biol J Linn Soc 60:95–106CrossRefGoogle Scholar
  18. Fernández A (1973) The lactic acid as chromosome fixer (in Spanish). Bol Soc Argent Bot 15:287–290Google Scholar
  19. Fernández A (1987) Chromosome studies in Turnera and Piriqueta (Turneraceae) (in Spanish). Bonplandia 6:1–21Google Scholar
  20. Fernández A, Arbo MM (1989) Genomic relationships among four diploid species of Turnera with yellow flowers (Serie Canaligerae) (in Spanish). Bonplandia 6:93–109Google Scholar
  21. Fernández A, Solís Neffa VG (2004) Genomic relationships between Turnera krapovickasii (2x, 4x) and T. ulmifolia (6x) (Turneraceae, Turnera). Caryologia 57:45–51CrossRefGoogle Scholar
  22. Fernández A, Rey H, Solís Neffa VG (2010) Evolutionary relationships between Turnera grandiflora and the octoploid T. fernandezii (Turneraceae). Ann Bot Fennici 47:321–329CrossRefGoogle Scholar
  23. Fernández A, Fernández SA, Kovalsky IE, Solís Neffa VG (2017) Cytogenetic studies in triploid and tetraploid hybrids of Turnera krapovickasii, T. scabra and T. subulata (Pasifloraceae – Turneroideae) (in Spanish). Bol Soc Argent Bot (in press)Google Scholar
  24. Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates Inc., SunderlandGoogle Scholar
  25. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  26. Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The evolution of the genome. Elsevier Academic Press, San Diego, pp 428–501Google Scholar
  27. Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploids. Bot Rev (London) 41:361–390CrossRefGoogle Scholar
  28. Husband BC (2004) The role of triploid hybrids in the evolutionay dynamics of mixed-ploidy populations. Biol J Linn Soc 82:537–546CrossRefGoogle Scholar
  29. Husband BC, Schemske DW (1998) Cytotype distribution at a diploid–tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694CrossRefPubMedGoogle Scholar
  30. Karpechenko GD (1927) The production of polyploid gametes in hybrids. Hereditas 9:349–368CrossRefGoogle Scholar
  31. Köhler C, Kradolfer D (2011) Epigenetic mechanisms in the endosperm and their consequences for the evolution of flowering plants. Acta Biochim Biophys 1809:438–443CrossRefGoogle Scholar
  32. Köhler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148CrossRefPubMedGoogle Scholar
  33. Kovalsky IE (2012) Origin and establishment of neopolyploids in natural populations of Turnera sidoides L. (Turneraceae) (in Spanish). Dissertation, Universidad Nacional de CórdobaGoogle Scholar
  34. Kovalsky IE, Solís Neffa VG (2012) Evidence of 2n microspore production in a natural diploid population of Turnera sidoides subsp. carnea and its relevance in the evolution of the T. sidoides (Turneraceae) autopolyploid complex. J Plant Res 125:725–734CrossRefPubMedGoogle Scholar
  35. Kovalsky IE, Solís Neffa VG (2016) Evidence of the production of 2n eggs in diploid plants of the autopolyploid complex Turnera sidoides L. (Passifloraceae). Plant Syst Evol 302:357–366CrossRefGoogle Scholar
  36. Lange W, Wagenvoort M (1973) Meiosis in triploid Solanum tuberosum L. Euphytica 22:8–18CrossRefGoogle Scholar
  37. Lazaroff YA, Moreno EMS, Fernández A, Solís Neffa VG (2015) Cytogeographic analysis in Turnera krapovickasii Arbo (Passifloraceae) (in Spanish). Bol Soc Argent Bot 51:153–167Google Scholar
  38. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189CrossRefGoogle Scholar
  39. Levin DA (1971) The origin of reproductive isolating mechanisms in flowering plants. Taxon 20:91–113CrossRefGoogle Scholar
  40. Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25CrossRefGoogle Scholar
  41. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  42. Lumaret R, Guillerm JL, Delay J, Loutfi AAL, Izco J, Jay M (1987) Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia 73:436–446CrossRefPubMedGoogle Scholar
  43. Mable BK (2003) Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci 8:582–590CrossRefPubMedGoogle Scholar
  44. Marks GE (1966) The origin and significance of intraspecific polyploidy: experimental evidence from Solanum chacoense. Evol Int J Org Evol 20:552–557CrossRefGoogle Scholar
  45. Moreno EMS, Speranza PR, Roggero Luque JM, Solís Neffa VG (2015) Natural hybridization among subspecies of Turnera sidoides L. (Passifloraceae) revealed by morphological and genetic evidences. Plant Syst Evol 301:883–892CrossRefGoogle Scholar
  46. Negri V, Veronesi F (1989) Evidence for the existence of 2.n gametes in Lotus tenuis Wald. et Kit (2n = 2x = 12); their relevance in evolution of breeding of Lotus corniculatus L. (2n = 4x = 24). Theor Appl Genet 78:400–404CrossRefPubMedGoogle Scholar
  47. Ockendon DJ (1968) Biosystematic studies in the Linum perenne group. New Phytol 67:787–813CrossRefGoogle Scholar
  48. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462CrossRefPubMedGoogle Scholar
  49. Pannell JR, Obbard DJ, Buggs RJ (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 2:547–560CrossRefGoogle Scholar
  50. Panseri AF, Seijo JG, Solís Neffa VG (2008) Analysis of the production and frequency of unreduced microspores in diploids of Turnera sidoides (Turneraceae) (in Spanish). Bol Soc Argent Bot 43:95–101Google Scholar
  51. Petit C, Bretagnolle CF, Felber F (1999) Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends Ecol Evol 14:306–311CrossRefPubMedGoogle Scholar
  52. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol System 29:467–501CrossRefGoogle Scholar
  53. Roggero Luque JM (2010) Chromosome studies in populations of Turnera sidoides L. (Turneraceae) from southern Brazil (in Spanish). Dissertation. Universidad Nacional del NordesteGoogle Scholar
  54. Savidan Y, Pernès J (1981) Diploid-tetraploid-dihaploid cycles in the evolution of Panicum maximum Jacq. Evol Int J Org Evol 36:596–600Google Scholar
  55. Schuter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380CrossRefGoogle Scholar
  56. Seijo JG, Solís Neffa VG (2006) Cytogenetic studies in the rare South American Lathyrus hasslerianus Burk. Cytologia 71:11–19CrossRefGoogle Scholar
  57. Shore JS, Barrett SCH (1985) Morphological differentiation and crossability among populations of the Turnera ulmifolia L. complex (Turneraceae). Syst Bot 10:308–321CrossRefGoogle Scholar
  58. Solís Neffa VG (2000) Biosystematic studies in Turnera sidoides L. complex (Turneraceae, Leiocarpae) (in Spanish). Dissertation, National University of CórdobaGoogle Scholar
  59. Solís Neffa VG (2010) Geographic patterns of morphological variation in Turnera sidoides L. subsp. pinnatifida (Juss. Ex Poir.) Arbo (Turneraceae). Plant Syst Evol 284:219–229CrossRefGoogle Scholar
  60. Solís Neffa VG, Fernández A (2001) Cytogeography of the Turnera sidoides L. complex (Turneraceae, Leiocarpae). Bot J Linn Soc 137:189–196CrossRefGoogle Scholar
  61. Solís Neffa VG, Panseri AF, Reynoso W, Seijo JG (2004) Flower colour variation and chromosome numbers in the north western distributional area of Turnera sidoides (Turneraceae) (in Spanish). Bonplandia 13:117–128Google Scholar
  62. Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then...and now: Stebbins revisited. Am J Bot 101:1057–1078CrossRefPubMedGoogle Scholar
  63. Speranza PR, Seijo JG, Grela IA, Solís Neffa VG (2007) Chloroplast DNA variation in the Turnera sidoides L. complex (Turneraceae): biogeographical implications. J Biogeogr 34:427–436CrossRefGoogle Scholar
  64. Stebbins GL (1958) The inviability, weakness and sterility of interspecific hybrids. Adv Genet 9:147–215PubMedGoogle Scholar
  65. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  66. Stift M, Bregman R, Gerard J, Oostermeijer B, van Tienderen PH (2010) Other tetraploid species and conspecific diploids as sources of genetic variation for an autotetraploid. Am J Bot 97:1858–1866CrossRefPubMedGoogle Scholar
  67. Sybenga J (1975) Meiotic configurations: a source of information for estimating genetic parameters. Springer, BerlinCrossRefGoogle Scholar
  68. Taylor NL, Wieseman E (1988) Triploids and tetraploids from 43 to 23 crosses in red clover. Crop Sci 27:14–18CrossRefGoogle Scholar
  69. Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307CrossRefPubMedGoogle Scholar
  70. Van Campo M (1957) Palynologie africaine I. Bull Inst Fran Afr Noire 19:659–678Google Scholar
  71. Van Dijk P, Hartog M, Van Delden W (1992) Single cytotype areas in autopolyploid Plantago media L. Biol J Linn Soc 46:315–331CrossRefGoogle Scholar
  72. Werner JE, Peloquin SJ (1991) Occurrence and mechanism of 2n egg formation in 2x potato. Genome 34:975–982CrossRefGoogle Scholar
  73. Woodell SRJ, Valentine DH (1961) Studies in the British Primulas. IX. Seed incompatibility in diploid–autotetraploid crosses. New Phytol 60:282–294CrossRefGoogle Scholar
  74. Xue Z, Ping L, Mengjun L (2011) Cytological mechanism of 2n pollen formation in Chinese jujube (Ziziphus jujuba Mill. ‘Linglingzao’). Euphytica 182:231–238CrossRefGoogle Scholar
  75. Zhang S, Qi L, Chen C, Li X, Song W, Chen R (2004) A report of triploid Populus of the section Aigeiros. Silvae Genet 53:69–75Google Scholar
  76. Zhou S, Barba-Gonzalez R, Lim KB, Ramanna MS, Van Tuyl JM (2008) Interspecific hybridization in lily (Lilium): Interploidy crosses involving interspecific F1 hybrids and their progenies. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol V. Global Science Books, Isleworth, pp 152–156Google Scholar
  77. Zohary D, Nur U (1959) Natural triploids in the orchard grass, Dactylis glomerata L., polyploid complex and their significance for gene flow from diploid to tetraploid levels. Evol Int J Org Evol 13:311–317CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • I. Evelin Kovalsky
    • 1
    • 2
  • Juan M. Roggero Luque
    • 1
  • Gabriela Elías
    • 3
  • Silvia A. Fernández
    • 1
    • 2
  • Viviana G. Solís Neffa
    • 1
    • 2
  1. 1.Instituto de Botánica del Nordeste (UNNE-CONICET)CorrientesArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE)CorrientesArgentina
  3. 3.Departamento de Ciencias Básicas y TecnológicasUniversidad Nacional de ChilecitoChilecitoArgentina

Personalised recommendations