Journal of Plant Research

, Volume 130, Issue 6, pp 1079–1093 | Cite as

The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress

  • Yuguang Wang
  • Piergiorgio Stevanato
  • Lihua Yu
  • Huijie Zhao
  • Xuewei Sun
  • Fei Sun
  • Jing Li
  • Gui Geng
Regular Paper
  • 355 Downloads

Abstract

Salinity stress is a major limitation to global crop production. Sugar beet, one of the world’s leading sugar crops, has stronger salt tolerant characteristics than other crops. To investigate the response to different levels of salt stress, sugar beet was grown hydroponically under 3 (control), 70, 140, 210 and 280 mM NaCl conditions. We found no differences in dry weight of the aerial part and leaf area between 70 mM NaCl and control conditions, although dry weight of the root and whole plant treated with 70 mM NaCl was lower than control seedlings. As salt concentrations increased, degree of growth arrest became obvious In addition, under salt stress, the highest concentrations of Na+ and Cl were detected in the tissue of petioles and old leaves. N and K contents in the tissue of leave, petiole and root decreased rapidly with the increase of NaCl concentrations. P content showed an increasing pattern in these tissues. The activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione peroxidase showed increasing patterns with increase in salt concentrations. Moreover, osmoprotectants such as free amino acids and betaine increased in concentration as the external salinity increased. Two organic acids (malate and citrate) involved in tricarboxylic acid (TCA)-cycle exhibited increasing contents under salt stress. Lastly, we found that Rubisco activity was inhibited under salt stress. The activity of NADP-malic enzyme, NADP-malate dehydrogenase and phosphoenolpyruvate carboxylase showed a trend that first increased and then decreased. Their activities were highest with salinity at 140 mM NaCl. Our study has contributed to the understanding of the sugar beet physiological and metabolic response mechanisms under different degrees of salt stress.

Keywords

Salt stress Reactive oxygen species Osmotic stress Photosynthesis Sugar beet 

References

  1. Aebi H (1984) CAT in vitro. Meth Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3 CrossRefPubMedGoogle Scholar
  2. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Hakim MA (2016) Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biol Res 49:24. doi:10.1186/s40659-016-0084-5 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341. doi:10.1093/jxb/53.372.1331 CrossRefPubMedGoogle Scholar
  4. Bendaly A, Messedi D, Smaoui A, Ksouri R, Bouchereau A, Abdelly C (2016) Physiological and leaf metabolome changes in the xerohalophyte species Atriplex halimus induced by salinity. Plant Physiol Biochem 103:208–218. doi:10.1016/j.plaphy.2016.02.037 CrossRefPubMedGoogle Scholar
  5. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257. doi:10.1093/jxb/ert430 CrossRefPubMedGoogle Scholar
  6. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448. doi:10.2135/cropsci2005.0437 CrossRefGoogle Scholar
  7. Cushman JC, Tillett RL, Wood JA, Branco JM, Schlauch KA (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum performing C3 photosynthesis and crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894. doi:10.1093/jxb/ern008 CrossRefPubMedGoogle Scholar
  8. Duarte B, Santos D, Marques JC, Caçador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiol Biochem 67:178–188. doi:10.1016/j.plaphy.2013.03.004 CrossRefPubMedGoogle Scholar
  9. Eschie HA, Al-Barhi B, Al-Gheity S, Al-Khanjari S (2002) Root and shoot growth in salinity-stressed Alfaalfa in respone to nitrogen source. J Plant Nutr 25:2559–2569. doi:10.1081/PLN-120014713 CrossRefGoogle Scholar
  10. Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624. doi:10.1093/jxb/erm242 CrossRefPubMedGoogle Scholar
  11. Feng K, Yu J, Cheng Y, Ruan M, Wang R, Ye Q, Zhou G, Li Z, Yao Z, Yang Y, Zheng Q, Wan H (2016) The SOD gene family in tomato: identification, phylogenetic relationships, and expression patterns. Front Plant Sci 7:1279. doi:10.3389/fpls.2016.01279 PubMedPubMedCentralGoogle Scholar
  12. Feria AB, Bosch N, Sánchez A, Nieto-Ingelmo AI, de la Osa C, Echevarría C, García-Mauriño S, Monreal JA (2016) Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions. Planta 244:901–913. doi:10.1007/s00425-016-2556-9 CrossRefPubMedGoogle Scholar
  13. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. doi:10.1111/j.1469-8137.2008.02531.x CrossRefPubMedGoogle Scholar
  14. Gawronska K, Romanowska E, Miszalski Z, Niewiadomska E (2013) Limitation of C3-CAM shift in the common ice plant under high irradiance. J Plant Physiol 170:129–135. doi:10.1016/j.jplph.2012.09.019 CrossRefPubMedGoogle Scholar
  15. Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased prolineaccumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/pp.122.4.1129 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu L, Zhang Z, Xiang Z, Yang Z (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in Tall Fescue (Lolium arundinaceum). Front Plant Sci 7:179. doi:10.3389/fpls.2016.00179 PubMedPubMedCentralGoogle Scholar
  17. Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594. doi:10.1016/j.tplants.2015.06.008 CrossRefPubMedGoogle Scholar
  18. Kaur N, Dhawan M, Sharma I, Pati PK (2016) Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol 16:131. doi:10.1186/s12870-016-0824-2 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li W, Wang R, Wang W, Liu H, Liu J, Zhang S, Ai Y (2007) Effect of NaCl stress on sugar beet growth. Sugar Crops China 2:17–19. doi:10.3969/j.issn.1007-2624.2007.02.006 Google Scholar
  20. Liu A, Hu Z, Bi A, Fan J, Gitau MM, Amombo E, Chen L, Fu J (2016) Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. Ecotoxicology 25:1445–1457. doi:10.1007/s10646-016-1696-9 CrossRefPubMedGoogle Scholar
  21. Lu R (2000) Soil agricultural chemical analysis method. Agricultural science and technology press, Bei JingGoogle Scholar
  22. Luo S, Ishida H, Makino A, Mae T (2002) Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site. J Biol Chem 277:12382–12387. doi:10.1074/jbc.M111072200 CrossRefPubMedGoogle Scholar
  23. Ma D, Guo T, Song X, Wang C, Han Q, Yue Y, Cha F (2010) Effects of nitrogen fertilizer application on RuBP carboxylase activity and chlorophyll fluorescence parameters in flag leaves of winter wheat. Acta Bot Bor Occ Sin 30:2197–2202Google Scholar
  24. Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19. doi:10.1007/s00709-011-0365-3 CrossRefPubMedGoogle Scholar
  25. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi:10.1016/j.tplants.2004.08.009 CrossRefPubMedGoogle Scholar
  26. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  27. NakanoY, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. doi:10.1093/oxfordjournals.pcp.a076232 Google Scholar
  28. Nisperos-Carriedo MO, Buslig BS, Shaw PE (1992) Simultaneous detection of dehydroascorbic, ascorbic and some organic acids in fruits and vegetables by HPLC. J Agric Food Chem 40:1127–1130. doi:10.1021/jf00019a007 CrossRefGoogle Scholar
  29. Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134. doi:10.1016/j.tplants.2007.01.005 CrossRefPubMedGoogle Scholar
  30. Pearce RB, Strange RN, Smith H (1976) Glycinebetaine and choline in wheat: Distribution in relation to infection by Fusarium graminearum. Phytochemistry 15:953–954. doi:10.1016/S0031-9422(00)84377-0 CrossRefGoogle Scholar
  31. Peng C, Geng G, Yu L, Yang Y, Pi Z, Sun F, Sun X, Zhao H (2014) Effect of different Na+ concentrations on growth and physiological traits of sugar beet. J Plant Nutr Fertil 20:459–465. doi:10.11674/zwyf.2014.0223 Google Scholar
  32. Percey WJ, Shabala L, Breadmore MC, Guijt RM, Bose J, Shabala S (2014) Ion transport in broad bean leaf mesophyll under saline conditions. Planta 240:729–743. doi:10.1007/s00425-014-2117-z CrossRefPubMedGoogle Scholar
  33. Pi Z, Stevanato P, Sun F, Yang Y, Sun X, Zhao H, Geng G, Yu L (2016) Proteomic changes induced by potassium deficiency and potassium substitution by sodium in sugar beet. J Plant Res 129:527–538. doi:10.1007/s10265-016-0800-9 CrossRefPubMedGoogle Scholar
  34. Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na(+)/K(+) ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609. doi:10.3389/fpls.2016.00609 PubMedPubMedCentralGoogle Scholar
  35. Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB (2012) Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One 7:e44005. doi:10.1371/journal.pone.0044005 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Robinson MF, Very A, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance? Ann Bot 80:387–393. doi:10.1006/anbo.1996.0435 CrossRefGoogle Scholar
  37. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. doi:10.1016/j.copbio CrossRefPubMedGoogle Scholar
  38. Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489. doi:10.1093/jxb/eri181 CrossRefPubMedGoogle Scholar
  39. Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26. doi:10.1016/j.plaphy.2013.04.013 CrossRefPubMedGoogle Scholar
  40. Stewart RR, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248. doi:10.1104/pp.65.2.245 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511. doi:10.1007/BF00027496 CrossRefPubMedGoogle Scholar
  42. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol 428:419–438. doi:10.1016/S0076-6879(07)28024-3 CrossRefPubMedGoogle Scholar
  43. Volkmar KM, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78:19–27. doi:10.4141/P97-020 CrossRefGoogle Scholar
  44. Wang Y, Zhan Y, Wu C, Gong S, Zhu N, Chen S, Li H (2012) Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Sci 191–192:93–99. doi:10.1016/j.plantsci.2012.05.001 CrossRefPubMedGoogle Scholar
  45. Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014a) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14:290. doi:10.1186/s12870-014-0290-7 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang XY, Wang P, Qi YP, Zhou CP, Yang LT, Liao XY, Wang LQ, Zhu DH, Chen LS (2014b) Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs. Food Chem 145:984–990. doi:10.1016/j.foodchem.2013.09.021 CrossRefPubMedGoogle Scholar
  47. Xu C, Tang X, Shao H, Wang H (2016) Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Curr Genom 17:207–214. doi:10.2174/1389202917666160202215548 CrossRefGoogle Scholar
  48. Yang S, Hong N (2012) Improvement on determination of free amino acids content in tea. Food Sci Techol 37:297–305.Google Scholar
  49. Yang L, Zhang Y, Zhu N, Koh J, Ma C, Pan Y, Yu B, Chen S, Li H (2013) Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. J Prot Res 12:4931–4950. doi:10.1021/pr400177m CrossRefGoogle Scholar
  50. Yang C, Zhou Y, Fan J, Fu Y, Shen L, Yao Y, Li R, Fu S, Duan R, Hu X, Guo J (2015) SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROSscavenging in transgenic Arabidopsis. Plant Physiol Biochem 96:377–387. doi:10.1016/j.plaphy.2015.08.010 CrossRefPubMedGoogle Scholar
  51. Zeng Y, Li L, Yang R, Yi X, Zhang B (2015) Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress. Sci Rep 5:13639. doi:10.1038/srep13639 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang S, Zhang D, Fan S, Du L, Shen Y, Xing L, Li Y, Ma J, Han M (2016) Effect of exogenous GA3 andits inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple (Malus domestica Borkh.). Plant Physiol Biochem 107:178–186. doi:10.1016/j.plaphy.2016.06.005 CrossRefPubMedGoogle Scholar
  53. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686. doi:10.1104/pp.107.111443 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Yuguang Wang
    • 1
    • 2
    • 3
  • Piergiorgio Stevanato
    • 4
  • Lihua Yu
    • 1
    • 2
  • Huijie Zhao
    • 1
  • Xuewei Sun
    • 1
  • Fei Sun
    • 1
  • Jing Li
    • 3
  • Gui Geng
    • 1
    • 2
  1. 1.Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang ProvinceHeilongjiang UniversityHarbinChina
  2. 2.Sugar Beet Research Institute of Chinese Academy of Agricultural SciencesCrop Academy of Heilongjiang UniversityHarbinChina
  3. 3.The College of Life SciencesNortheast Agricultural UniversityHarbinChina
  4. 4.DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e AmbienteUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations