Journal of Plant Research

, Volume 130, Issue 6, pp 1047–1060 | Cite as

Perianth organs in Nymphaeaceae: comparative study on epidermal and structural characters

  • Lucía Melisa Zini
  • Beatriz Gloria Galati
  • María Silvia Ferrucci
Regular Paper


The perianth organs of six species of Nymphaeaceae, representing Euryale, Nymphaea and Victoria, were studied on the basis of macroscopical, micromorphological, and anatomical characters. The aims were to determine whether perianth is differentiated among tepal whorls considering the presence of sepaloid and petaloid characters, and to evaluate the occurrence of both features in individual tepals. Selected perianth series were examined macroscopically, with light microscopy, and scanning electron microscopy. Osmophores were detected using neutral red and Sudan. In all tepals examined, stomata and hydropotes were present on the abaxial and adaxial surfaces. These are anomocytic or stephanocytic; hydropotes of irregular type are also present. The outer series of tepals display morpho-anatomical characters in most part related with photosynthetic and protective functions. Osmophore activity is very scarce and petaloid epidermal morphology is present only in N. lotus, thus allowing interpretation of this whorl as primarily sepaloid. The second series exhibits both petal-like and sepal-like characters; in N. amazonum and N. gardneriana sepaloid and petaloid group of cells are present on the abaxial surface of individual tepals. Therefore, this whorl is transitional between the outer and the innermost ones. Both the morpho-anatomy and presence of osmophore activity indicate that the innermost series is entirely petaloid. Inner tepals of E. ferox, N. alba, and V. cruziana share the presence of epidermal cells with predominantly smooth cuticle, whereas those of N. amazonum, N. gardneriana, and N. lotus share a cuticular ornamentation consisting of numerous papillae on each cell. Morphological characters of the perianth epidermis are in some respects congruent with the molecular phylogeny of Nymphaeaceae. Our results support the co-expression of sepaloidy and petaloidy within individual tepals and the mosaic model of perianth evolution proposed for the angiosperms.


Anatomy Cuticular ornamentation Euryale Nymphaea Perianth Victoria 



Financial support for this research was provided by the Agencia Nacional de Promoción Científica, Tecnológica y de Innovación, Argentina (ANPCyT-UNNE, PICTO 2012-0202), the Universidad Nacional del Nordeste (PI A012-2013), and the Universidad de Buenos Aires (UBACyT20020120100056BA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10265_2017_963_MOESM1_ESM.pdf (7.8 mb)
Supplementary material 1 (PDF 7958 KB)


  1. APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20CrossRefGoogle Scholar
  2. Borsch T, Hilu KW, Wiersema JH, Löhne C, Barthlott W, Wilde V (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes of the chloroplast trnT-F region. Int J Plant Sci 168:639–671CrossRefGoogle Scholar
  3. Borsch T, Löhne C, Wiersema JW (2008) Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon 57:1052–1081Google Scholar
  4. Borsch T, Löhne C, Mbaye MS, Wiersema J (2011) Towards a complete species tree of Nymphaea: shedding further light on subg. Brachyceras and its relationships to the Australian water-lilies. Telopea 13:193–217CrossRefGoogle Scholar
  5. Buzgo M, Soltis PS, Soltis DE (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947CrossRefGoogle Scholar
  6. Carpenter KJ (2005) Stomatal architecture and evolution in basal angiosperms. Am J Bot 92:1595–1615CrossRefPubMedGoogle Scholar
  7. Carpenter KJ (2006) Specialized structures in the leaf epidermis of basal angiosperms: morphology, distribution, and homology. Am J Bot 93:665–681CrossRefPubMedGoogle Scholar
  8. Catian G, Scremin-Dias E (2013) Compared leaf anatomy of Nymphaea (Nymphaeaceae) species from Brazilian flood plain. Braz J Biol 73:809–817CrossRefPubMedGoogle Scholar
  9. Catian G, Scremin-Dias E (2015) Phenotypic variations in leaf anatomy of Nymphaea gardneriana (Nymphaeaceae) demonstrate its adaptive plasticity. J Torrey Bot Soc 142:18–26CrossRefGoogle Scholar
  10. Conard SH (1905) The waterlilies. A monograph on the genus Nymphaea. Publ Carneg Inst 4:1–279Google Scholar
  11. Doyle JA, Endress PK (2011) Tracing the early evolutionary diversification of the angiosperm flower. In: Wanntorp L, Ronse de Craene LP (eds) Flowers of the tree of life. Cambridge University Press, New York, pp 88–119CrossRefGoogle Scholar
  12. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  13. Endress PK (2001) The flowers in basal extant angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140CrossRefGoogle Scholar
  14. Endress PK (2002) Morphology and angiosperm systematics in the molecular era. Bot Rev 68:545–570CrossRefGoogle Scholar
  15. Endress PK (2004) Structure and relationships of basal relictual angiosperms. Aust Syst Bot 17:343–366CrossRefGoogle Scholar
  16. Endress PK (2005) Links between embryology and evolutionary floral morphology. Curr Sci 89:749–754Google Scholar
  17. Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Adv Bot Res 44:1–61CrossRefGoogle Scholar
  18. Endress PK (2008) Perianth biology in the basal grade of extant angiosperms. Int J Plant Sci 169:844–862CrossRefGoogle Scholar
  19. Endress PK, Doyle JA (2009) Reconstructing the ancestral flower and its initial specializations. Am J Bot 96:22–66CrossRefPubMedGoogle Scholar
  20. Fahn A (2002) Functions and location of secretory tissues in plants and their possible evolutionary trends. Isr J Plant Sci 50:59–64CrossRefGoogle Scholar
  21. Galati BG (1981) Ontogenia de los tricomas y estomas de Cabomba australis Speg. (Nymphaeaceae). Lilloa 35:151–158Google Scholar
  22. Gonzalez AM (2002) Anatomía del vástago en especies selectas de plantas hidrófilas. In Arbo MM, Tressens SG (eds) Flora del Iberá. EUDENE, Corrientes, pp 431–450Google Scholar
  23. Gonzalez AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bonplandia 9:287–294Google Scholar
  24. Hiepko P (1965) Vergleichend-morphologische und entwicklungs-geschichtliche Untersuchungen uber das Perianth bei den Polycarpicae I. Bot Jahrb Syst 84:359–426Google Scholar
  25. Igersheim A, Endress PK (1998) Gynoecium diversity and systematics of paleo-herbs. Bot J Linn Soc 124:213–271CrossRefGoogle Scholar
  26. Irish VF (2009) Evolution of petal identity. J Exp Bot 60:2517–2527CrossRefPubMedGoogle Scholar
  27. Ito M (1984) Studies in the floral morphology and anatomy of Nymphaeales. II. Floral anatomy of Nymphaea tetragona George. Acta Phytotax Geobot 35:94–102Google Scholar
  28. Ito M (1987) Phylogenetic systematics of the Nymphaeales. Bot Mag (Tokyo) 100:17–35CrossRefGoogle Scholar
  29. Jaramillo MA, Kramer EM (2007) The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci 168:61–72CrossRefGoogle Scholar
  30. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, Inc., New YorkGoogle Scholar
  31. Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–83CrossRefGoogle Scholar
  32. Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744CrossRefPubMedGoogle Scholar
  33. Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323–331CrossRefPubMedGoogle Scholar
  34. Les DH, Schneider EL, Padgett DJ, Soltis PS, Soltis DE, Zanis M (1999) Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): a synthesis of non-molecular, rbcL, matK, and 18 S rDNA data. Syst Bot 24:28–46CrossRefGoogle Scholar
  35. Löhne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163CrossRefGoogle Scholar
  36. Luque R, Sousa HC, Graus JE (1996) Métodos de coloracão de Roeser (1972) modificado Kropp E., 1972. Visando a substituicão do azul de astra por azul de alcião 8GS ou 8GX. Acta Bot Brasil 10:199–212CrossRefGoogle Scholar
  37. Martin C, Bhatt K, Baumann K, Jin H, Zachgo S, Roberts K, Schwarz-Sommer Z, Glover B, Perez-Rodrigues M (2002) The mechanics of cell fate determination in petals. Philos Trans R Soc Lond B Biol Sci 357:809–813CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moseley MF (1958) Morphological studies of the Nymphaeaceae I. The nature of the stamens. Phytomorphology 8:1–29Google Scholar
  39. Moseley MF (1961) Morphological studies of the Nymphaeaceae II. The flowers of Nymphaea. Bot Gaz 122:233–259CrossRefGoogle Scholar
  40. Moseley MF, Schneider EL, Williamson PS (1993) Phylogenetic interpretations from selected floral vasculature characters in the Nymphaeaceae sensu lato. Aquat Bot 44:325–342CrossRefGoogle Scholar
  41. Nishizawa K, Nakata I, Kishida A, Ayer WA, Browne LM (1990) Some biologically active tannins of Nuphar variegatum. Phytochemistry 29:2491–2494CrossRefGoogle Scholar
  42. Ronse De Craene LP (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann Bot 100:621–630CrossRefGoogle Scholar
  43. Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Syst Bot 33:301–325CrossRefGoogle Scholar
  44. Ronse De Craene LP, Brockington SF (2013) Origin and evolution of petals in angiosperms. Plant Ecol Evol 146:5–25CrossRefGoogle Scholar
  45. Ronse De Craene LP, Soltis PS, Soltis DE (2003) Evolution of floral structures in basal angiosperms. Int J Plant Sci 164:S329–S363CrossRefGoogle Scholar
  46. Schneider EL (1976) The floral anatomy of Victoria Schomb. (Nymphaeaceae). Bot J Linn Soc 72:115–148CrossRefGoogle Scholar
  47. Schneider EL (1979) Pollination biology of the Nymphaeaceae. In: Caron DM (ed) Proceedings of the fourth international symposium on pollination. Stn Spec Misc Publ 1:419–430Google Scholar
  48. Schneider EL, Tucker SC, Williamson PS (2003) Floral development in the Nymphaeales 1. Int J Plant Sci 164:S279–S292CrossRefGoogle Scholar
  49. Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer Associates, SunderlandGoogle Scholar
  50. Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007) The ABC model and its applicability to basal angiosperms. Ann Bot 100:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  51. Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE (2009) Floral variation and floral genetics in basal angiosperms. Am J Bot 96:110–128CrossRefPubMedGoogle Scholar
  52. Valla JJ, Cirino D (1972) Biología floral del irupé (Victoria cruziana). Darwiniana 17:477–500Google Scholar
  53. Vergeer LHT, Van der Velde G (1997) Phenolic content of daylight-exposed and shaded floating leaves of water lilies (Nymphaeaceae) in relation to infection by fungi. Oecologia 112:481–484CrossRefPubMedGoogle Scholar
  54. Vogel S (1990) The role of scent glands in pollination. Smithsonian Institutions Libraries, WashingtonGoogle Scholar
  55. Warner KA, Rudall PJ, Frohlich MW (2008) Differentiation of perianth organs in Nymphaeales. Taxon 57:1096–1109Google Scholar
  56. Warner KA, Rudall PJ, Frohlich MW (2009) Environmental control of sepalness and petalness in perianth organs of waterlilies: a new Mosaic Theory for the evolutionary origin of a differentiated perianth. J Exp Bot 60:3559–3574CrossRefPubMedPubMedCentralGoogle Scholar
  57. Weberling F (1989) Morphology of flowers and inflorescences. Cambridge University Press, CambridgeGoogle Scholar
  58. Whitney HM, Bennett KV, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ (2011) Why do so many petals have conical epidermal cells? Ann Bot 108:609–616CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wiersema JH (1987) A monograph of Nymphaea subgenus Hydrocallis, (Nymphaeaceae). Syst Bot Monogr 16:1–112CrossRefGoogle Scholar
  60. Wilkinson HP (1979) The plant surface. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 1, 2nd edn. Clarendon Press, Oxford, pp 97–165Google Scholar
  61. Williamson PS, Moseley MF (1989) Morphological studies of the Nymphaeaceae sensu lato XVII. Floral anatomy of Ondinea purpurea subspecies purpurea (Nymphaeaceae). Am J Bot 76:1779–1794CrossRefGoogle Scholar
  62. Yoo MJ, Soltis PS, Soltis DE (2010a) Expression of floral MADS-box genes in two divergent water lilies: Nymphaeales and Nelumbo. Int J Plant Sci 171:121–146CrossRefGoogle Scholar
  63. Yoo MJ, Chanderbali AS, Altman NS, Soltis PS, Soltis DE (2010b) Evolutionary trends in the floral transcriptome: insights from one of the basalmost angiosperms, the water lily Nuphar advena (Nymphaeaceae). Plant J 64:687–698CrossRefPubMedGoogle Scholar
  64. Zanis MJ, Soltis PS, Qiu YL, Zimmer E, Soltis DE (2003) Phylogenetic analyses and perianth evolution in basal angiosperms. Ann Mo Bot Gard 90:129–150CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Lucía Melisa Zini
    • 1
  • Beatriz Gloria Galati
    • 2
  • María Silvia Ferrucci
    • 1
  1. 1.Facultad de Ciencias AgrariasInstituto de Botánica del Nordeste (Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional del Nordeste)CorrientesArgentina
  2. 2.Facultad de Agronomía, Depto. de Recursos Naturales y Ambiente, Cátedra de Botánica GeneralUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations