Skip to main content
Log in

Chromosome number and genome size variation in Colocasia (Araceae) from China

Journal of Plant Research Aims and scope Submit manuscript

Abstract

Chromosome number and genome size are important cytological characters that significantly influence various organismal traits. We investigated chromosome number and genome size variation in 73 accessions belonging to four Colocasia species from China. Five different chromosome counts (2n = 26, 28, 38, 42, and 56) were found, the largest one representing a new record in Colocasia. The basic chromosome numbers are x = 13, 14, and 19, corresponding to 2x, 3x, and 4x cytotypes. Yunnan Province, China is considered the center of Colocasia polyploid origin. The 2C values in our accessions ranged from 3.29 pg in C. gigantea to 12.51 pg in C. esculenta. All species exhibit inter- and intraspecific chromosomal variation. Differences in DNA content among the Colocasia species seem to have occurred by chromosomal gain under similar habitats. Polyploidization also obviously contributes to 2C value variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmed I (2014) Evolutionary dynamics in taro (Colocasia esculenta L.). Dissertation, Massey University

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems, and prospects. Ann Bot 95:45–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandham PE, Doherty MJ (1998) Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot 82:67–73

    Article  Google Scholar 

  • Cao LM, Long CL (2004) Chromosome numbers of eight Colocasia taxa and karyotypes of five species occurring in China. Acta Bot Yunnan 26:310–316

    Google Scholar 

  • Chakraborty BN, Bhattacharya GN (1984) Desynapsis as well as inversion heterozygosity in the natural population of triploid Colocasia antiquorm Schott. Cytologia 49:739–743

    Article  Google Scholar 

  • Chaudhuri JB, Sharma A (1979) Chromosome studies in certain members of Araceae. Genét Ibér 30–31:161–188

    Google Scholar 

  • Coates DJ, Yen DE, Gaffey PM (1988) Chromosome variation in Taro, Colocasia esculenta: implications for origin in the Pacific. Cytologia 53:551–560

    Article  Google Scholar 

  • Darington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen and Unwin Ltd, London

    Google Scholar 

  • Dart S, Kron P, Mable BK (2004) Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Can J Bot 82:185–197

    Article  Google Scholar 

  • Das A, Das AB (2014) Karyotype analysis of ten draught resistant cultivars of Indian taro—Colocasia esculenta cv. antiquorom Schott. Nucleus 57:113–120

    Article  Google Scholar 

  • Huang XF, Ke WD, Liu YM, Ye YY, Li SM, Peng J, Liu YP, Li F (2012) Chromosomal ploidy identification of Taro (Colocasia) germplasm resources. China Veget 6:42–46

    Google Scholar 

  • Kawahara T (1978) Chromosome number of taros in Nepal and India. Chrom Info Serv 24:4–5

    Google Scholar 

  • Krishnan R, Magoon ML (1977) Edible aroids-new insights into phylogeny. In: Leakey CLA (ed) Proceedings of the 3rd international symposium on tropical root crops, International Institute of Tropical Agriculture, Ibadan, pp 58–60

  • Kuruvilla KM, Singh A (1981) Karyotypic and electrophoretic studies on taro and its origin. Euphytica 30:405–413

    Article  CAS  Google Scholar 

  • Lavia GI, Ortiz AM, Fernández A (2009) Karyotypic studies in wild germplasm of Arachis (Leguminosae). Genet Resour Crop Evol 56:755–764

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot 100:505–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Levan A, Fedga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li H, Boyce PC (2010) Colocasia. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 23. Science Press, St. Louis, pp 73–75

    Google Scholar 

  • Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Syst Evol 249:139–149

    Article  Google Scholar 

  • Matthews PJ (2006) Written records of taro in the Eastern Mediterranean. In: Ertug ZF (ed) Proceedings of the IVth International Congress of Ethnobotany (ICEB 2005), Yeditepe University, Istanbul pp 419–426

  • Nakayama S, Uga Y, Maw-Oo T, Kawase M (2008) Chromosomes and 5S rDNA-repeats of wild taro Colocasia esculenta from Myanmar. J Agric Rural Dev Trop 52:32–35

    CAS  Google Scholar 

  • Onwueme IC (1978) The tropical tuber crops: yam, cassava, sweet potato and cocoyam. Wiley, Chichester

    Google Scholar 

  • Ozkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94:260–264

    Article  CAS  PubMed  Google Scholar 

  • Parvin S, Kabir G, Ud-Deen MM, Sarker JK (2008) Karyotype analysis of seven varieties of Taro Colocasia esculenta (L.) Schott. from Bangladesh. J Bio Sci 16:15–18

    Google Scholar 

  • Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48

    Article  Google Scholar 

  • Petersen G (1989) Cytology and systematics of Araceae. Nord J Bot 9:119–166

    Article  Google Scholar 

  • Ramachandran K (1978) Cytological studies on South Indian Araceae. Cytologia 43:289–303

    Article  Google Scholar 

  • Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Amer J Bot 90:980–987

    Article  Google Scholar 

  • Sreekumari MT, Mathew (1991a) Karyomorphology of five morphotypes of taro (Colocasia esculenta (L.) Schott). Cytologia 56:215–218

    Article  Google Scholar 

  • Sreekumari MT, Mathew (1991b) Karyotypically distinct morphotypes in taro (Colocasia esculenta (L.) Schott). Cytologia 56:399–402

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Subramanian D (1979) Cytological studies in Colocasia antiquorum Schott. J Cytol Gene 14:179–184

    Google Scholar 

  • Tanaka R (1971) Types of resting nuclei in Orchidaceae. Bot Mag Tokyo 84:118–122

    Article  Google Scholar 

  • Tanaka R (1977) Recent karyotype studies. In: Ogawa K, Koike S, Kurosumi I Sato M (eds) Plant cytology. Asakura Publisher, Tokyo, pp 293–326

    Google Scholar 

  • Tanaka R (1987) The karyotype theory and wide crossing as an example in Orchidaceae. In: Hong DY (ed) Plant chromosome research 1989, Proceedings of the Sino-Japanese Symposium on Plant Chromosomes, Hiroshima pp 1–10

  • Tian XM, Zhou XY, Gong N (2011) Applications of flow cytometry in plant research—analysis of nuclear DNA content and ploidy level in plant cells. Chin Agric Sci Bull 27:21–27

    CAS  Google Scholar 

  • Tuna M, Vogel KP, Arumuganathan K, Gill KS (2001) DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Sci 41:1629–1634

    Article  Google Scholar 

  • Wang GY, Meng Y, Yang YP (2013) Karyological analyses of 33 species of the tribe Ophiopogoneae (Liliaceae) from Southwest China. J Plant Res 126:597–604

    Article  PubMed  Google Scholar 

  • White MJD (1978) Modes of speciation. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Yang ZY, Yi TS, Li H, Gong X (2003) A cytological study on three species of Colocasia (Araceae) from Yunnan. Caryologia 56:323–327

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Chen Yu for providing some necessary materials, and Ms. Zhang Chunling for her important contributions in experiment. The work was financially supported by the National Natural Science Foundation of China (NSFC) (31590823, 41271058), the Basic Research Project of Ministry of Science and Technology of China (2012FY111400), and the General Project of Natural Science Research in Anhui Province (AQKJ2015B018), and the Key Project of Natural Science Research of Education Department in Anhui (KJ2017A358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ping Yang.

Additional information

Guang-Yan Wang and Xiao-Ming Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10849 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GY., Zhang, XM., Qian, M. et al. Chromosome number and genome size variation in Colocasia (Araceae) from China. J Plant Res 130, 989–997 (2017). https://doi.org/10.1007/s10265-017-0959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0959-8

Keywords

Navigation