Journal of Plant Research

, Volume 130, Issue 6, pp 989–997 | Cite as

Chromosome number and genome size variation in Colocasia (Araceae) from China

  • Guang-Yan Wang
  • Xiao-Ming Zhang
  • Min Qian
  • Xiang-Yang Hu
  • Yong-Ping Yang
Regular Paper


Chromosome number and genome size are important cytological characters that significantly influence various organismal traits. We investigated chromosome number and genome size variation in 73 accessions belonging to four Colocasia species from China. Five different chromosome counts (2n = 26, 28, 38, 42, and 56) were found, the largest one representing a new record in Colocasia. The basic chromosome numbers are x = 13, 14, and 19, corresponding to 2x, 3x, and 4x cytotypes. Yunnan Province, China is considered the center of Colocasia polyploid origin. The 2C values in our accessions ranged from 3.29 pg in C. gigantea to 12.51 pg in C. esculenta. All species exhibit inter- and intraspecific chromosomal variation. Differences in DNA content among the Colocasia species seem to have occurred by chromosomal gain under similar habitats. Polyploidization also obviously contributes to 2C value variation.


Chromosome number Colocasia Genome size Polyploidy 



We are grateful to Professor Chen Yu for providing some necessary materials, and Ms. Zhang Chunling for her important contributions in experiment. The work was financially supported by the National Natural Science Foundation of China (NSFC) (31590823, 41271058), the Basic Research Project of Ministry of Science and Technology of China (2012FY111400), and the General Project of Natural Science Research in Anhui Province (AQKJ2015B018), and the Key Project of Natural Science Research of Education Department in Anhui (KJ2017A358).

Supplementary material

10265_2017_959_MOESM1_ESM.pdf (10.6 mb)
Supplementary material 1 (PDF 10849 KB)


  1. Ahmed I (2014) Evolutionary dynamics in taro (Colocasia esculenta L.). Dissertation, Massey UniversityGoogle Scholar
  2. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems, and prospects. Ann Bot 95:45–90CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brandham PE, Doherty MJ (1998) Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot 82:67–73CrossRefGoogle Scholar
  4. Cao LM, Long CL (2004) Chromosome numbers of eight Colocasia taxa and karyotypes of five species occurring in China. Acta Bot Yunnan 26:310–316Google Scholar
  5. Chakraborty BN, Bhattacharya GN (1984) Desynapsis as well as inversion heterozygosity in the natural population of triploid Colocasia antiquorm Schott. Cytologia 49:739–743CrossRefGoogle Scholar
  6. Chaudhuri JB, Sharma A (1979) Chromosome studies in certain members of Araceae. Genét Ibér 30–31:161–188Google Scholar
  7. Coates DJ, Yen DE, Gaffey PM (1988) Chromosome variation in Taro, Colocasia esculenta: implications for origin in the Pacific. Cytologia 53:551–560CrossRefGoogle Scholar
  8. Darington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen and Unwin Ltd, LondonGoogle Scholar
  9. Dart S, Kron P, Mable BK (2004) Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Can J Bot 82:185–197CrossRefGoogle Scholar
  10. Das A, Das AB (2014) Karyotype analysis of ten draught resistant cultivars of Indian taro—Colocasia esculenta cv. antiquorom Schott. Nucleus 57:113–120CrossRefGoogle Scholar
  11. Huang XF, Ke WD, Liu YM, Ye YY, Li SM, Peng J, Liu YP, Li F (2012) Chromosomal ploidy identification of Taro (Colocasia) germplasm resources. China Veget 6:42–46Google Scholar
  12. Kawahara T (1978) Chromosome number of taros in Nepal and India. Chrom Info Serv 24:4–5Google Scholar
  13. Krishnan R, Magoon ML (1977) Edible aroids-new insights into phylogeny. In: Leakey CLA (ed) Proceedings of the 3rd international symposium on tropical root crops, International Institute of Tropical Agriculture, Ibadan, pp 58–60Google Scholar
  14. Kuruvilla KM, Singh A (1981) Karyotypic and electrophoretic studies on taro and its origin. Euphytica 30:405–413CrossRefGoogle Scholar
  15. Lavia GI, Ortiz AM, Fernández A (2009) Karyotypic studies in wild germplasm of Arachis (Leguminosae). Genet Resour Crop Evol 56:755–764CrossRefGoogle Scholar
  16. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  17. Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot 100:505–526CrossRefPubMedPubMedCentralGoogle Scholar
  18. Levan A, Fedga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  19. Li H, Boyce PC (2010) Colocasia. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 23. Science Press, St. Louis, pp 73–75Google Scholar
  20. Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Syst Evol 249:139–149CrossRefGoogle Scholar
  21. Matthews PJ (2006) Written records of taro in the Eastern Mediterranean. In: Ertug ZF (ed) Proceedings of the IVth International Congress of Ethnobotany (ICEB 2005), Yeditepe University, Istanbul pp 419–426Google Scholar
  22. Nakayama S, Uga Y, Maw-Oo T, Kawase M (2008) Chromosomes and 5S rDNA-repeats of wild taro Colocasia esculenta from Myanmar. J Agric Rural Dev Trop 52:32–35Google Scholar
  23. Onwueme IC (1978) The tropical tuber crops: yam, cassava, sweet potato and cocoyam. Wiley, ChichesterGoogle Scholar
  24. Ozkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94:260–264CrossRefPubMedGoogle Scholar
  25. Parvin S, Kabir G, Ud-Deen MM, Sarker JK (2008) Karyotype analysis of seven varieties of Taro Colocasia esculenta (L.) Schott. from Bangladesh. J Bio Sci 16:15–18Google Scholar
  26. Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48CrossRefGoogle Scholar
  27. Petersen G (1989) Cytology and systematics of Araceae. Nord J Bot 9:119–166CrossRefGoogle Scholar
  28. Ramachandran K (1978) Cytological studies on South Indian Araceae. Cytologia 43:289–303CrossRefGoogle Scholar
  29. Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Amer J Bot 90:980–987CrossRefGoogle Scholar
  30. Sreekumari MT, Mathew (1991a) Karyomorphology of five morphotypes of taro (Colocasia esculenta (L.) Schott). Cytologia 56:215–218CrossRefGoogle Scholar
  31. Sreekumari MT, Mathew (1991b) Karyotypically distinct morphotypes in taro (Colocasia esculenta (L.) Schott). Cytologia 56:399–402CrossRefGoogle Scholar
  32. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  33. Subramanian D (1979) Cytological studies in Colocasia antiquorum Schott. J Cytol Gene 14:179–184Google Scholar
  34. Tanaka R (1971) Types of resting nuclei in Orchidaceae. Bot Mag Tokyo 84:118–122CrossRefGoogle Scholar
  35. Tanaka R (1977) Recent karyotype studies. In: Ogawa K, Koike S, Kurosumi I Sato M (eds) Plant cytology. Asakura Publisher, Tokyo, pp 293–326Google Scholar
  36. Tanaka R (1987) The karyotype theory and wide crossing as an example in Orchidaceae. In: Hong DY (ed) Plant chromosome research 1989, Proceedings of the Sino-Japanese Symposium on Plant Chromosomes, Hiroshima pp 1–10Google Scholar
  37. Tian XM, Zhou XY, Gong N (2011) Applications of flow cytometry in plant research—analysis of nuclear DNA content and ploidy level in plant cells. Chin Agric Sci Bull 27:21–27Google Scholar
  38. Tuna M, Vogel KP, Arumuganathan K, Gill KS (2001) DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Sci 41:1629–1634CrossRefGoogle Scholar
  39. Wang GY, Meng Y, Yang YP (2013) Karyological analyses of 33 species of the tribe Ophiopogoneae (Liliaceae) from Southwest China. J Plant Res 126:597–604CrossRefPubMedGoogle Scholar
  40. White MJD (1978) Modes of speciation. W. H. Freeman and Company, San FranciscoGoogle Scholar
  41. Yang ZY, Yi TS, Li H, Gong X (2003) A cytological study on three species of Colocasia (Araceae) from Yunnan. Caryologia 56:323–327CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Guang-Yan Wang
    • 1
    • 2
    • 4
  • Xiao-Ming Zhang
    • 1
    • 2
    • 3
  • Min Qian
    • 1
    • 2
  • Xiang-Yang Hu
    • 1
    • 2
  • Yong-Ping Yang
    • 1
    • 2
  1. 1.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Germplasm Bank of Wild Species, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Life Sciences, The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest AnhuiAnqing Normal UniversityAnqingChina

Personalised recommendations