Chloroplast aggregation during the cold-positioning response in the liverwort Marchantia polymorpha

  • Hiroyuki Tanaka
  • Mayuko Sato
  • Yuka Ogasawara
  • Noriko Hamashima
  • Othmar Buchner
  • Andreas Holzinger
  • Kiminori Toyooka
  • Yutaka Kodama
Regular Paper

Abstract

Under low-light conditions, chloroplasts localize along periclinal cell walls at temperatures near 20 °C, but they localize along anticlinal cell walls near 5 °C. This phenomenon is known as the cold-positioning response. We previously showed that chloroplasts move as aggregates rather than individually during the cold-positioning response in the fern Adiantum capillus-veneris. This observation suggested that chloroplasts physically interact with each other during the cold-positioning response. However, the physiological processes underlying chloroplast aggregation are unclear. In this report, we characterized chloroplast aggregation during the cold-positioning response in the liverwort Marchantia polymorpha. Confocal laser microscopy observations of transgenic liverwort plants expressing a fluorescent fusion protein that localizes to the chloroplast outer envelope membrane (OEP7-Citrine) showed that neighboring chloroplast membranes did not fuse during the cold-positioning response. Transmission electron microscopy analysis revealed that a distance of at least 10 nm was maintained between neighboring chloroplasts during aggregation. These results indicate that aggregated chloroplasts do not fuse, but maintain a distance of at least 10 nm from each other during the cold-positioning response.

Keywords

Bryophytes Chloroplast aggregation Chloroplast movement Low temperature Outer envelope membrane Temperature-controlled microscopy 

Supplementary material

10265_2017_958_MOESM1_ESM.pdf (8.6 mb)
Supplementary material 1 (PDF 8782 KB)
10265_2017_958_MOESM2_ESM.avi (3.8 mb)
Movie S1: Time-lapse observation of chloroplast movement during the avoidance response induced by high-intensity white light. Images were acquired at 1-min intervals for 5 h. Bar = 5 μm. (AVI 3928 KB)
10265_2017_958_MOESM3_ESM.avi (1.5 mb)
Movie S2: Time-lapse observation of chloroplast movement during the cold-positioning response under low-intensity white light conditions. Images were acquired at 5-min intervals for 12 h. Bar = 5 μm. (AVI 1534 KB)

References

  1. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305CrossRefPubMedGoogle Scholar
  2. Bowman JL, Araki T, Kohchi T (2016) Marchantia: past, present and future. Plant Cell Physiol 57:205–209CrossRefPubMedGoogle Scholar
  3. Buchner O, Lütz C, Holzinger A (2007) Design and construction of a new temperature-controlled chamber for light and confocal microscopy under monitored conditions: biological application for plant samples. J Microsc 225:183–191CrossRefPubMedGoogle Scholar
  4. Gabryś H, Walczak T, Malec P (1997) Interaction between phytochrome and blue light photoreceptor system in Mougeotia: temperature dependence. J Photochem Photobiol B 38:35–39CrossRefGoogle Scholar
  5. Haupt W, Mortel G, Winkelnkemper I (1969) Demonstration of different dichroic orientation of phytochrome Pr and Pfr. Planta 88:183–186CrossRefPubMedGoogle Scholar
  6. Inoue K (2007) The chloroplast outer envelope membrane: the edge of light and excitement. J Integr Plant Biol 49:1100–1111CrossRefGoogle Scholar
  7. Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T (2015) Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS One 10:e0138876CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kadota A, Sato Y, Wada M (2000) Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor. Planta 210:932–937CrossRefPubMedGoogle Scholar
  9. Kadowaki Y, Sato Y, Ghosh TK, Takezawa D (2015) Inhibition by abscisic acid of cold-induced relocation of chloroplasts in the liverwort Marchantia polymorpha. Cryobiol Cryotechnol 61:145–150Google Scholar
  10. Kagawa T, Wada M (1994) Brief irradiation with red or blue light induces orientational movement of chloroplasts in dark-adapted prothallial cells of the fern Adiantum. J Plant Res 107:389–398CrossRefGoogle Scholar
  11. Kagawa T, Wada M (1996) Phytochrome- and blue-light-absorbing pigment-mediated directional movement of chloroplasts in dark-adapted prothallial cells of fern Adiantum as analyzed by microbeam irradiation. Planta 198:488–493CrossRefGoogle Scholar
  12. Kagawa T, Wada M (1999) Chloroplast avoidance response induced by blue light of high fluence rate in prothallial cells of the fern Adiantum as analyzed by microbeam irradiation. Plant Physiol 119:917–923CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kagawa T, Lampater T, Hartmann E, Wada M (1997) Phytochrome mediated branch formation in moss Ceratodon. J Plant Res 110:363–370CrossRefGoogle Scholar
  14. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141CrossRefPubMedGoogle Scholar
  15. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832CrossRefPubMedGoogle Scholar
  16. Kimura S, Kodama Y (2016) Actin-dependence of the chloroplast cold positioning response in the liverwort Marchantia polymorpha L. PeerJ 4:e2513CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kodama Y (2016) Time gating of chloroplast autofluorescence allows clearer fluorescence imaging in planta. PLoS One 11:e0152484CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kodama Y, Tsuboi H, Kagawa T, Wada M (2008) Low temperature-induced chloroplast relocation mediated by a blue light receptor, phototropin 2, in fern gametophytes. J Plant Res 121:441–448CrossRefPubMedGoogle Scholar
  19. Komatsu A, Terai M, Ishizaki K, Suetsugu N, Tsuboi H, Nishihama R, Yamato KT, Wada M, Kohchi T (2014) Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. Plant Physiol 166:411–427CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kondo A, Kaikawa J, Funaguma T, Ueno O (2004) Clumping and dispersal of chloroplasts in succulent plants. Planta 219:500–506CrossRefPubMedGoogle Scholar
  21. Kraml M, Biittner G, Haupt W, Herrmann H (1988) Chloroplast orientation in Mesotaenium: the phytochrome effect is strongly potentiated by interaction with blue light. Protoplasma Suppl 1:172–179CrossRefGoogle Scholar
  22. Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77:167–172CrossRefPubMedGoogle Scholar
  23. Łabuz J, Hermanowicz P, Gabryś H (2015) The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana. Plant Sci 239:238–249CrossRefPubMedGoogle Scholar
  24. Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13:2175–2190CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ogasawara Y, Ishizaki K, Kohchi T, Kodama Y (2013) Cold-induced organelle relocation in the liverwort Marchantia polymorpha L. Plant Cell Environ 36:1520–1528CrossRefPubMedGoogle Scholar
  26. Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ono K, Ohyama K, Gamborg OL (1979) Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14:225–229CrossRefGoogle Scholar
  29. Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103:15511–15516CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rasband WS (1997–2016) ImageJ. U.S. National Institutes of Health, Bethesda. http://imagej.nih.gov/ij/
  31. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, Greenwood JS, Mathur J (2012) Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell 4:1465–1477CrossRefGoogle Scholar
  33. Senn G (1908) Die Gestalts—und Lageveränderung der Pflanzen—Chromatophoren. Wilhelm-Engelmann, LeipzigGoogle Scholar
  34. Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tüzel E, Vidali L (2015) The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens. J Integr Plant Biol 57:106–119CrossRefPubMedGoogle Scholar
  35. Suetsugu N, Kagawa T, Wada M (2005) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol 139:151–162CrossRefPubMedPubMedCentralGoogle Scholar
  36. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:8860–8865CrossRefPubMedPubMedCentralGoogle Scholar
  37. Suetsugu N, Sato Y, Tsuboi H, Kasahara M, Imaizumi T, Kagawa T, Hiwatashi Y, Hasebe M, Wada M (2012) The KAC family of kinesin-like proteins is essential for the association of chloroplasts with the plasma membrane in land plants. Plant Cell Physiol 53:1854–1865CrossRefPubMedGoogle Scholar
  38. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Proc 7:27–41CrossRefGoogle Scholar
  39. Tsuboyama-Tanaka S, Kodama Y (2015) AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L. J Plant Res 128:337–344CrossRefPubMedGoogle Scholar
  40. von Braun SS, Schleiff E (2008) The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta 227:1151–1159CrossRefGoogle Scholar
  41. Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468CrossRefPubMedGoogle Scholar
  42. Yamada M, Kawasaki M, Sugiyama T, Miyake H, Taniguchi M (2009) Differential positioning of C4 mesophyll and bundle sheath chloroplasts: aggregative movement of C4 mesophyll chloroplasts in response to environmental stresses. Plant Cell Physiol 50:1736–1749CrossRefPubMedGoogle Scholar
  43. Yatsuhashi H, Kobayashi H (1993) Dual involvement of phytochrome in light-oriented chloroplast movement in Dryopteris sparsa protonemata. Photochem Photobiol B 19:25–31CrossRefGoogle Scholar
  44. Zurzycki J, Lelatko Z (1969) Action dichroism in the chloroplast rearrangements in various plant species. Acta Soc Bot Poloniae 38:493–506CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Hiroyuki Tanaka
    • 1
    • 2
  • Mayuko Sato
    • 3
  • Yuka Ogasawara
    • 1
  • Noriko Hamashima
    • 1
  • Othmar Buchner
    • 4
  • Andreas Holzinger
    • 4
  • Kiminori Toyooka
    • 3
  • Yutaka Kodama
    • 1
  1. 1.Center for Bioscience Research and EducationUtsunomiya UniversityTochigiJapan
  2. 2.Collaboration Center for Research and DevelopmentUtsunomiya UniversityTochigiJapan
  3. 3.Center for Sustainable Resource Science, RIKENKanagawaJapan
  4. 4.Institute of BotanyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations