Journal of Plant Research

, Volume 130, Issue 6, pp 1023–1033 | Cite as

Spines vs. microspines: an overview of the sculpture exine in selected basal and derived Asteraceae with focus on Asteroideae

  • María C. Tellería
Regular Paper


This study presents a detailed examination of the echinate and microechinate sculpturing in relation to the size of pollen grains in 31 selected species of Asteraceae belonging to the subfamilies Barnadesioideae, Mutisioideae, Carduoideae and Asteroideae. The aims were to recognize sculpturing patterns, under LM and SEM, within large and small pollen of both basal and derived species and to explore the features that could have taxonomic value to apply in palynological disciplines. The detailed examination of the exine surface showed both the relevance and limits of sculptural patterns for taxonomy. Under LM, the microechinate sculpture gave little taxonomic information, whereas in the echinate sculpture, three exine types and two subtypes were recognized. Type I included microechinate exine, which is commonly present in large pollen grains of the basal lineages. Types II (subtypes IIa and IIb) and III included echinate and smaller pollen grains. In these types, spines were always regularly arranged and, were characterized by the length, shape, tip, perforations and distribution. Type IIa included more or less conical spines usually with a distended base, less than 4 µm in length, present in species of different tribes like Astereae, Eupatorieae, Helenieae, Gnaphalieae, Senecioideae and Heliantheae to a lesser extent. Type IIb includes slender spines with narrower bases, longer than 4 µm, present in species of Coreopsideae, Heliantheae, Tageteae and Eupatorieae to a lesser extent. Type III included spines with swollen base, blunt tip and perforations over their entire surface. This type was present in only one of the basal species—Carduus thoermeri—and in one species of the derived tribe Helenieae, Gaillardia megapotamica. Probably, this is due to evolutionary convergence.


Asteraceae Microspines Pollen size Spines 



I specially thank Sonia Fontana and Thomas Giesecke for linguistic improvements, and two anonymous reviewers for their helpful comments and suggestions. I am grateful to Mariela Thellier—from CINDECA—for her assistance in using the scanning electron microscope, and Cristina Salgado and Ana González for their assistance in taking some LM photographs. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina (PIP 0044).


  1. Barreda V, Palazzesi L, Tellería MC (2008) Fossil pollen grains of Asteraceae from the Miocene of Patagonia: Nassauviinae affinity. Rev Palaeobot Palynol 151:51–58CrossRefGoogle Scholar
  2. Blackmore S (1982) A functional interpretation of Lactuceae (Compositae) pollen. Plant Syst Evol 141:153–168CrossRefGoogle Scholar
  3. Blackmore S, Wortley AH, Skvarla JJ, Robinson H (2009). Evolution of pollen in Compositae. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematic, evolution and biogeography of the Compositae. IAPT, Viena, pp 101–130Google Scholar
  4. Chaloner WG (1986) Electrostatic forces in insect pollination and their significance in exine ornamentation. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, Orlando, pp 103–108Google Scholar
  5. Dimon MT (1971) Problèmes généraux soulevés par l’étude pollinique des Composées Méditerranéennes. Nat Monsp 22:129–144 (in French with English abstract) Google Scholar
  6. Erdtman G (1960) The acetolysis method. A revised description. Sven Bot Tids 54:561–564Google Scholar
  7. Erdtman G (1969) Handbook of palynology. An introduction to the study of pollen grains and spores. Munksgaard, CopenhagenGoogle Scholar
  8. Funk VA, Anderberg AA, Baldwin BG et al (2009) Compositae metatrees: the next generation. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. IAPT, Viena, pp 747–777Google Scholar
  9. Heslop-Harrison J (1969) The origin of surface features of the pollen wall of Tagetes patula as observed by scanning electron microscopy. Cytobios 2:177–186Google Scholar
  10. Hidalgo O, Susanna A, García-Jacas N, Martín J (2008) From acaveate to caveate: evolution of pollen types in the Rhaponticum group (Asteraceae, Centaureinae) related to extreme conditions. Bot J Linn Soc 158:499–510CrossRefGoogle Scholar
  11. Lee S (1978) A factor analysis study of the functional significance of Angiosperm pollen. Syst Bot 3:1–19CrossRefGoogle Scholar
  12. Palazzesi L, Barreda V, Tellería MC (2009) Fossil pollen grains of Asteraceae from the Miocene of Patagonia: Barnadesioideae affinity. Rev Palaeobot Palynol 155:83–88CrossRefGoogle Scholar
  13. Pereira Coutinho A, Dinis AM (2007) A contribution to the structural knowledge of the pollen exine in subtribe Inulinae (Inulinae, Asteraceae). Plant Syst Evol 269:159–170CrossRefGoogle Scholar
  14. Pereira Coutinho A, Dinis AM (2009) A light, scanning electron, and transmission electron microscopic study of pollen wall architecture in the subtribe Gnaphaliinae (Gnaphalieae, Asteraceae). Plant Syst Evol 283:79–82CrossRefGoogle Scholar
  15. Pereira Coutinho A, Aguiar CF, da Bandeira DS, Dinis AM (2011) Comparative pollen morphology of the Iberian species of Pulicaria (Asteraceae, Inuleae, Inulinae) and its taxonomic significance. Plant Syst Evol 297:171–183CrossRefGoogle Scholar
  16. Punt WS, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spores terminology. Rev Palaeobot Palynol 143:1–81CrossRefGoogle Scholar
  17. Righetti de Abreu VH, Santos JC, Esteves RL, Gonçalves-Esteves V (2015) Pollen morphology of Praxelis (Asteraceae, Eupatorieae, Praxelinae) in Brazil. Plant Syst Evol 301:559–608Google Scholar
  18. Rodríguez Cancelli R (2008) Palinologia de Asteraceae: morfologia polínica e suas implicaçŏes nos registros do Quaternario do Rio Grande do Sul. Dissertation. Universidade Federal do Rio Grande do Sul (in Portuguese with English abstract) Google Scholar
  19. Silkjak-Yakovlev S (1990) Mécanismes d’harmomegathie des différents types de pollen dans deux tribus d’Asteraceae. Bull Soc Bot France Actual Bot 137(2):151–153Google Scholar
  20. Skvarla JJ, Tomb BL, Patel A, Tomb AS (1977) Pollen morphology in the Compositae and in morphologically related families. In: Heywood VH, Harbome JB, Turner BL (eds) The biology and chemistry of the Compositae. Academic Press, New York, pp 141–248Google Scholar
  21. Skvarla JJ, Rowley JR, Chissoe WF, Folly P (2003) The common occurrence of incompletely developed pollen of Eupatorium (Compositae: Eupatorieae). Plant Syst Evol 243:1–11CrossRefGoogle Scholar
  22. Stix E (1960) Pollenmorphologische Untersuchungen an Compositen. Grana Palyn 2:41–104CrossRefGoogle Scholar
  23. Tellería MC (2008) Taxonomic significance of pollen types in the Guyana Highland-centred genera (Asteraceae, Mutisioideae). Bot J Linn Soc 156:327–340CrossRefGoogle Scholar
  24. Tellería MC, Katinas L (2004) A comparative palynologic study of Chaetanthera (Asteraceae, Mutisieae) and allied genera. Syst Bot 29:752–773CrossRefGoogle Scholar
  25. Tellería MC, Katinas L (2005) The unusual occurrence of tricolpate pollen within Mutisieae (Asteraceae). Grana 44:91–97CrossRefGoogle Scholar
  26. Tellería MC, Katinas L (2009) New insights into the pollen morphology of Mutisia (Asteraceae, Mutisieae). Plant Syst Evol 280:229–241CrossRefGoogle Scholar
  27. Tellería MC, Barreda V, Palazzesi L, Katinas L (2010) Echinate fossil pollen of Asteraceae from the Late Oligocene of Patagonia: an assessment off its botanical affinity. Plant Syst Evol 285:75–81CrossRefGoogle Scholar
  28. Tellería MC, Sancho G, Funk VA, Ventosa I, Roque N (2013) Pollen morphology and its taxonomic significance in the tribe Gochnatieae (Compositae, Gochnatioideae). Plant Syst Evol 299:935–948CrossRefGoogle Scholar
  29. Tormo Molina R, Ubera jiménez JL (1995) Tipos polínicos de la tribu Cardueae en la península Ibérica. Monogr Jard Bot Córdoba 2:1–52 (in Spanish with English abstract) Google Scholar
  30. Torres C (2000) Pollen size evolution: correlation between pollen volume and pistil length in Asteraceae. Sex Plant Reprod 12:365–370CrossRefGoogle Scholar
  31. Ubiergo P, Lapp M, Torrecilla P (2009) Morfología del polen de especies de Gongylolepis (Mutisieae: Asteraceae) de la Guayana venezolana. Anal Jard Bot Madrid 66:93–107 (in Spanish with English abstract) CrossRefGoogle Scholar
  32. Urtubey E, Tellería MC (1998) Pollen morphology of the subfamily Barnadesioideae (Asteraceae) and its phylogenetic and taxonomic significance. Rev Palaeobot Palynol 104:19–37CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.Laboratorio de Sistemática y Biología Evolutiva (LASBE), Edificio Anexo Museo de La PlataUnidades de Investigación FCNyMLa PlataArgentina

Personalised recommendations