Journal of Plant Research

, Volume 130, Issue 6, pp 953–972 | Cite as

Phylogeny and biogeography of the genus Stevia (Asteraceae: Eupatorieae): an example of diversification in the Asteraceae in the new world

  • Akiko Soejima
  • Akifumi S. Tanabe
  • Izumi Takayama
  • Takayuki Kawahara
  • Kuniaki Watanabe
  • Miyuki Nakazawa
  • Misako Mishima
  • Tetsukazu Yahara
Regular Paper

Abstract

The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0–7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine–oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine–oak forest zone. The presence of many conspecific diploid–polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.

Keywords

Agamospermy Asteraceae Biogeography Divergence time Phylogeny Polyploidy 

Supplementary material

10265_2017_955_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1234 KB)

References

  1. Axelrod DI (1958) Evolution of the Madro-Tertiary geoflora. Bot Rev 24:433–509CrossRefGoogle Scholar
  2. Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P (2015) Biological evidence supports and early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA 112:6110–6115CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:3–16CrossRefPubMedGoogle Scholar
  4. Baldwin BG, Sanderson MJ (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA 95:9402–9406CrossRefPubMedPubMedCentralGoogle Scholar
  5. Becerra JX (2005) Timing the origin and expansion of the Mexican tropical dry forest. Proc Natl Acad Sci USA 102:10919–10923CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bremer K (1994) Asteraceae—cladistics and classification. Timber Press, PortlandGoogle Scholar
  7. Bush MB, Piperno DR, Colinvaux PA, De Oliveris PE, Krissek LA, Miller MA, Rowe WE (1992) A 14,300 year paleoecological profile of a lowland tropical lake in Panama. Ecol Monogr 62:251–275CrossRefGoogle Scholar
  8. Crawford DJ, Tadesse M, Kimball R, Carrillo-Reyes P, Sánchez-Vega I, Mort ME (2014) Coreopsis sect. Pseudoagarista (Asteraceae: Coreopsideae): molecular phylogeny, chromosome numbers, and comments on taxonomy and distribution. Taxon 63:1092–1102CrossRefGoogle Scholar
  9. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131CrossRefPubMedGoogle Scholar
  10. Doyle JJ, Doyle JL (1987) A rapid isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  11. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461CrossRefPubMedGoogle Scholar
  12. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  13. Ferrari L, Lopez-Martinez M, Aguirre-Diaz G, Carrasco-Nunez G (1999) Space-time patterns of Cenozoic arc volcanism in central Mexico: from the Sierra Madre occidental to the Mexican volcanic belt. Geology 27:303–306CrossRefGoogle Scholar
  14. Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P (2000) Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican volcanic belt. Tectonophysics 318:161–185CrossRefGoogle Scholar
  15. Fofana B, Harvengt L, Baudoin JP, Du Jardin P (1997) New primers for the polymerase chain amplification of cpDNA intergenic spacers in Phaseolus phylogeny. Belg J Bot 129:118–122Google Scholar
  16. Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biologiske Skrifter 55:343–374Google Scholar
  17. Funk VA, Susanna A, Stuessy TF, Robinson H (2009a) Classification of Compositae. In: Funk V, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Institute of Botany, University of Vienna, Vienna, pp 171–189Google Scholar
  18. Funk VA et al (2009b) Compositae metatrees: the next generation. In: Funk V, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Institute of Botany, University of Vienna, Vienna, pp 747–777Google Scholar
  19. Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuation, or an accident of the Andean orogeny? Ann Missouri Bot Gard 69:557–593CrossRefGoogle Scholar
  20. Gottlieb LD (1981) Gene number in species of Astereae that have different chromosome numbers. Proc Natl Acad Sci USA 78:3726–3729CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gottlieb LD (2004) Rethinking classic examples of recent speciation in plants. New Phytol 161:71–82CrossRefGoogle Scholar
  22. Graham A (1989) Paleofloristic and paleoclimatic changes in the Tertiary of northern Latin America. Rev Paleobot Palynol 60:283–293CrossRefGoogle Scholar
  23. Graham A (1996) A contribution to the geologic history of the Compositae. In: Hind DJN, Beentje HJ (eds) Proceedings of the International Compositae Conference, Kew, 1994, vol. 1, Compositae: Systematics. Royal Bot Gardens, Kew, pp 123–140Google Scholar
  24. Graham A (1999) The tertiary history of the northern temperate element in the northern Latin American biota. Am J Bot 86:32–38CrossRefPubMedGoogle Scholar
  25. Grashoff JL (1972) A Systematic Study of the North and Central American species of Stevia. Ph.D. dissertation, Univ. of Texas, AustinGoogle Scholar
  26. Gutiérrez DG, Muñoz-Schick M, Grossi MA, Rodríguez-Cravero JF, Morales V, Moreira-Muñoz A (2016) The genus Stevia (Eupatorieae, Asteraceae) in Chile: a taxonomical and morphological analysis. Phytotaxa 282:1–18CrossRefGoogle Scholar
  27. Heywood VH (2009) The recent history of Compositae systematics: from daisies to deep achenes, sister groups and metatrees. In: Funk V, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Institute of Botany, University of Vienna, Vienna, pp 39–44Google Scholar
  28. Hind DJN, Robinson H (2007) Eupatorieae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 8. Springer, Berlin, pp 510–574Google Scholar
  29. Inoue J, dos Reis M, Yang Z (2011) A step-by-step tutorial: Divergence time estimation with approximate likelihood calculation using MCMCTREE in PAML. http://abacus.gene.ucl.ac.uk/software/paml.html
  30. Ito M, Yahara T, King RM, Watanabe K, Oshita S, Yokoyama J, Crawford DJ (2000) Molecular phylogeny of Eupatorieae (Asteraceae) estimated from cpDNA RFLP and its implication for the polyploid origin hypothesis of the tribe. J Plant Res 113:91–96CrossRefGoogle Scholar
  31. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  32. Keigwyn LDJr (1978) Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 6:630–634CrossRefGoogle Scholar
  33. King RM, Robinson H (1987) The Genera of the Eupatorieae (Asteraceae). Monographs in systematic botany from the Missouri botanical garden 22. Allen Press, Inc., LawrenceGoogle Scholar
  34. Leigh EG, O’Dea A, Vermeij GJ (2014) Historical biogeography of teh isthmus of Panama. Biol Rev 89:148–172CrossRefPubMedGoogle Scholar
  35. Liu JQ, Wang YJ, Wang AL, Ohba H, Abbott RJ (2006) Radiation and diversification within the Ligularia–Cremanthodium–Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai–Tibetan Plateau. Mol Phylogenetics Evol 38:31–49CrossRefGoogle Scholar
  36. Lozano-García S, Sosa-Nájera S, Sugiura Y, Caballero M (2005) 23,000 year of vegetation history of the Upper Lerma, a tropical high-altitude basin in Central Mexico. Quatern Res 64:70–82CrossRefGoogle Scholar
  37. Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600CrossRefGoogle Scholar
  38. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348:226–229CrossRefPubMedGoogle Scholar
  39. Nakamura I, Kameya N, Kato Y, Yamanaka S, Jomori H, Sato Y (1997) A proposal for identifying the short ID sequence which addresses the plastid subtype of higher plants. Breed Sci 47:385–388Google Scholar
  40. Ooi K, Endo Y, Yokoyama J, Murakami N (1995) Useful primer designs to amplify DNA fragments of the plasmid gene matK from angiosperm plants. J Jpn Bot 70:328–331Google Scholar
  41. Panero JL, Crozier BS (2016) Macroevolutionary dynamics in the early diversification of Asteraceae. Mol Phylogenetics Evol 99:116–132CrossRefGoogle Scholar
  42. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://abacus.gene.ucl.ac.uk/software/paml.html
  43. Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56:453–466CrossRefPubMedGoogle Scholar
  44. Richardson JE, Pennington, RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242–2245CrossRefPubMedGoogle Scholar
  45. Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216CrossRefPubMedGoogle Scholar
  47. Rivera VL, Panero JL, Schilling EE, Crozier BS, Moraes MD (2016) Origins and recent radiation of Brazilian Eupatorieae (Asteraceae) in the eastern Cerrado and Atlantic Forest. Mol Phylogenet Evol 97:90–100CrossRefPubMedGoogle Scholar
  48. Robinson BL (1930) Observations on the genus Stevia. Contrib Gray Herb Harv Univ 90:36–58 (1pl) Google Scholar
  49. Robinson H, Schilling E, Paneno JL (2009) Eupatorieae. In: Funk V, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Institute of Botany, University of Vienna, Vienna, pp 731–744Google Scholar
  50. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rzedowski GC, Rzedowski J (2001) Flora fanerogamia del Valle de Mexico. Instituto de Ecologia, A.C., PatzcuaroGoogle Scholar
  52. Schilling EE, Panero JL, Crozier BS, Scott RW, Dávila P (2015) Bricklebush (Brickellia) phylogeny reveals dimensions of the great Asteraceae radiation in Mexico. Mol Phyl Evol 85:161–170CrossRefGoogle Scholar
  53. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  54. Semple JC, Watanabe K (2009) A review of chromosome numbers in the Asteraceae with hypotheses on chromosome base number ebolution. In: Funk V, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of Compositae, IAPT, Vienna, pp 61–72Google Scholar
  55. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508CrossRefPubMedGoogle Scholar
  56. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247CrossRefPubMedGoogle Scholar
  57. Soejima A, Yahara T, Watanabe K (2001a) Distribution and variation of sexual and agamospermous populations of Stevia (Asteraceae: Eupatorieae) in the lower latitudes, Mexico. Plant Species Biol 16:91–105CrossRefGoogle Scholar
  58. Soejima A, Yahara T, Watanabe K (2001b) Thirteen new species and two new combinations of Stevia (Asteraceae: Eupatorieae) from Mexico. Brittonia 53:377–395CrossRefGoogle Scholar
  59. Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiv E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytohenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501CrossRefGoogle Scholar
  60. Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  62. Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer, SunderlandGoogle Scholar
  63. Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proporrional, and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Eco Resour 11:914–921CrossRefGoogle Scholar
  64. Turner BL (1997) The Comps of Mexico. A systematic account of the family Asteracerae. vol. 1. Eupatorieae. Phytologia Memoirs vol. 11Google Scholar
  65. Valiente-Banuet A, Flores-Hernández N, Verdú M, Dávila P (1998) The chaparral vegetation in Mexico under nonmediterranean climate: the convergence and Madrean–Tethyan hypotheses reconsidered. Am J Bot 85:1398–1408CrossRefPubMedGoogle Scholar
  66. Wang XR, Tsumura H, Yoshimaru K, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. Am J Bot 86:1742–1753CrossRefPubMedGoogle Scholar
  67. Watanabe K (2008) Index to Chromosome Numbers in Asteraceae. http://www.lib.kobe-u.ac.jp/products/asteraceae/index.html.
  68. Watanabe K, King RM, Yahara T, Ito M, Yokoyama J, Suzuki T, Crawford DJ (1995) Chromosomal cytology and evolution in Eupatorieae (Asteraceae). Ann Missouri Bot Gard 82:581–592CrossRefGoogle Scholar
  69. Watanabe K, Yahara T, Soejima A, Ito M (2001) Mexican species of the genus Stevia (Eupatorieae, Asteraceae): chromosome numbers and geographical distribution. Plant Species Biol 16:49–68CrossRefGoogle Scholar
  70. Watanabe K, Yahara T, Hashimoto G, Nagatani Y, Soejima A, Kawahara T, Nakazawa M (2007) Chromosome numbers and karyotypes in Asteraceae. Ann Missouri Bot Gard 94:643–654CrossRefGoogle Scholar
  71. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M et al (eds) PCR protocols: a guide to methods and application. Academic, San Diego, pp 315–322Google Scholar
  72. Willis KJ, Whittaker RJ (2002) Species diversity—Scale matters. Science 295:1245–1248CrossRefPubMedGoogle Scholar
  73. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Akiko Soejima
    • 1
  • Akifumi S. Tanabe
    • 2
  • Izumi Takayama
    • 3
  • Takayuki Kawahara
    • 4
  • Kuniaki Watanabe
    • 2
  • Miyuki Nakazawa
    • 3
  • Misako Mishima
    • 5
  • Tetsukazu Yahara
    • 3
  1. 1.Department of Biological Science, Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
  2. 2.Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan
  3. 3.Department of Biology, Graduate School of ScienceKyushu UniversityFukuokaJapan
  4. 4.Hokkaido Research Center, Forestry and Forest Products Research InstituteSapporoJapan
  5. 5.University MuseumKyushu UniversityFukuokaJapan

Personalised recommendations