Skip to main content
Log in

Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina

Journal of Plant Research Aims and scope Submit manuscript

Abstract

Fossil plants from the Lower Cretaceous (upper Aptian) of the La Cantera Formation, Argentina, are described. The fossils studied represent a leafy shooting system with several orders of articulated and striated axes and attached leaves with unequivocal ephedroid affinity. We also found associated remains of ovulate cones with four whorls of sterile bracts, which contain two female reproductive units (FRU). Ovulate cone characters fit well within the genus Ephedra. Special characters in the ovulate cones including an outer seed envelope with two types of trichomes, allowed us to consider our remains as a new Ephedra species. Abundant dispersed ephedroid pollen obtained from the macrofossil-bearing strata also confirms the abundance of Ephedraceae in the basin. The co-occurrence of abundant fossil of Ephedra (adapted to dry habitats) associated with thermophilic cheirolepideacean conifer pollen (Classopollis) in the unit would suggest marked seasonality at the locality during the Early Cretaceous. Furthermore, the floristic association is linked to dry sensitive rocks in the entire section. The macro- and microflora from San Luis Basin are similar in composition to several Early Cretaceous floras from the Northern Gondwana floristic province, but it may represent one of the southernmost records of an arid biome in South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Anderson JM, Anderson HM (1985) Palaeoflora of Southern Africa. Prodromus of South African megafloras. Devonian to Lower Cretaceous. Balkema, Rotterdam

    Google Scholar 

  • Archangelsky A, Llorens M (2009) Palinología de la Formación Kachaike, Cretácico Inferior de la Cuenca Austral, provincia de Santa Cruz. Granos de polen de Gimnospermas. Ameghiniana 46:225–234

    Google Scholar 

  • Arcucci AB, Prámparo MB, Codorniú L, Giordano G, Castillo Elías G, Puebla G, Mego N, Gómez M, Bustos Escalona E (2015) Biotic assemblages from lower Cretaceous lacustrine systems, San Luis Basin, central-western Argentina. Bol Geol Minero 126:109–128

    Google Scholar 

  • Azéma C, Boltenhagen E (1974) Pollen du Crétacé moyen du Gabon attribué aux Ephedrales. Laboratoire de paléobotanique, Université des Sciences et Techniques. Paléobiol Cont 5:1–37

    Google Scholar 

  • Baldoni AM (1992) Palynology of the Lower Lefipan Formation (Upper Cretaceous) of Barranca de los Perros, Chubut Province, Argentina. Part I. Cryptogam spores and gymnosperm pollen. Palynology 16:117–136

    Article  Google Scholar 

  • Bernardes de Oliveira ME, Dilcher DL, Franca Barreto AM, Ricardi-Branco F, Mohr B, De Castro-Fernandes MC (2003) La flora del Miembro Crato, Formación Santana, Cretácico Temprano de la Cuenca de Araripe, noreste del Brasil. 10° Congreso Geológico Chileno. Universidad de Concepción, Chile

    Google Scholar 

  • Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Bolinder K, Norbäck Ivarsson L, Humphreys AM, Ickert-Bond SM, Han F, Hoorn C, Rydin C (2016) Pollen morphology of Ephedra (Gnetales) and its evolutionary implications. Grana 55:24–51

    Article  Google Scholar 

  • Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner GJ (1968) Middle Cretaceous spores and pollen from Northeastern Peru. Pollen Spores 10:341–383

    Google Scholar 

  • Brenner GJ (1976) Middle Cretaceous floral provinces and early migrations of angiosperms. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 23–47

    Google Scholar 

  • Cao Z, Wu S, Zhang P, Li J (1998) Discovery of fossil monocotyledons from Yixian Formation, western Liaoning. Chin Sci Bull 43:230–233

    Article  Google Scholar 

  • Chamberlain CJ (1935) Gymnosperms. Structure and evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci 97:4086–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumakov NM, Zharkov MA, Herman AB, Doludenko MP, Kalandadze NM, Lebedev EL, Ponomareko AG, Rautian AS (1995) Climatic belts of the mid-Cretaceous time. Stratigr Geol Correl 3:241–260

    Google Scholar 

  • Cladera G, Del Fueyo GM, Villar de Seoane L, Archangelsky S (2007) Early Cretaceous riparian vegetation in Patagonia, Argentina. Rev Mus Argent Cienc Nat 9:49–58

    Article  Google Scholar 

  • Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard 72:716–793

    Article  Google Scholar 

  • Crane PR (1996) The fossil history of the Gnetales. Int J Plant Sci 157:50–57

    Article  Google Scholar 

  • Crane PR, Lidgard SH (1989) Paleolatitudinal gradients and temporal trends in Cretaceous floristic diversity. Science 246:675–678

    Article  CAS  PubMed  Google Scholar 

  • Crane PR, Upchurch GR Jr (1987) Drewria potomacensis gen. et sp. nov., an Early Cretaceous member of Gnetales from the Potomac Group of Virginia. Am J Bot 74:1722–1736

    Article  Google Scholar 

  • Crane PR, Herendeen P, Friis EM (2004) Fossils and plant phylogeny. Am J Bot 91:1683–1699

    Article  PubMed  Google Scholar 

  • Criado Roque P, Mombru CA, Moreno J (1981) Sedimentitas mesozoicas. In: Geología y Recursos Naturales de la Provincia de San Luis. Relatorio del VII Congreso Geológico Argentino, pp 79–96

  • De Lima MR (1980) Palinologia da Formação Santana (Cretáceo do Nordeste do Brasil). III. Descrição sistemática dos polens da Turma Plicates (Subturma Costates). Ameghiniana 17:15–47

    Google Scholar 

  • Dilcher DA, Bernardes-de-Oliveira MEC, Pons D, Lott TA (2005) Welwitschiaceae from the Lower Cretaceous of Northeastern Brazil. Am J Bot 92:1294–1310

    Article  PubMed  Google Scholar 

  • Dino R, Pocknall DT, Dettmann ME (1999) Morphology and ultrastructure of elater-bearing pollen from the Albian to Cenomanian of Brazil and Ecuador: implications for botanical affinity. Rev Palaeobot Palynol 105:201–235

    Article  Google Scholar 

  • Dorken VM (2012) Leaf-morphology and leaf-anatomy in Ephedra altissima Desf. (Ephedraceae, Gnetales) and their evolutionary relevance. Feddes Repert 123:243–255

    Article  Google Scholar 

  • Eames AJ (1952) The relationships of Ephedrales. Phytomorphol 2:79–100

    Google Scholar 

  • El-Ghazaly G, Rowley JR (1997) Pollen wall of Ephedra foliata. Palynology 21:7–18

    Article  Google Scholar 

  • Flores M (1969) El Bolsón de Las Salinas en la Provincia de San Luis. Jorn Geol Argent 1:311–327

    Google Scholar 

  • Flores M, Criado Roque P (1972) Cuenca de San Luis. In: Turner JCM (ed) Geología Regional Argentina. Academia Nacional de Ciencias Córdoba, Córdoba, pp 567–580

    Google Scholar 

  • Foster AS (1972) Venation patterns in the leaves of Ephedra. J Arnold Arbor 53:364–385

    Google Scholar 

  • Friedman WE (1990) Sexual reproduction in Ephedra nevadensis (Ephedraceae): further evidence of double fertilization in a non-flowering seed plant. Am J Bot 77:1582–1598

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2014) Welwitschioid diversity in the Early Cretaceous: evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53:175–196

    Article  Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants. 3rd edn. W. Freeman, New York

    Google Scholar 

  • Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W (1996) Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol Biol Evol 13:383–396

    Article  CAS  PubMed  Google Scholar 

  • Gugerli F, Sperisen C, Büchler U, Brunner I, Brodbeck S, Palmer JD, Qiu YL (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phylogenet Evol 21:167–175

    Article  CAS  PubMed  Google Scholar 

  • Guo SX, Wu XW (2000) Ephedrites from Latest Jurrassic Yixian Formation in western Liaoning, Northeast China. Acta Palaeontol Sin 39:81–91

    Google Scholar 

  • Guo SX, Sha JG, Bian LZ, Qiu YL (2009) Male spike strobiles with Gnetum affinity from the Early Cretaceous in western Liaoning, Northeast China. J Syst Evol 47:93–102

    Article  Google Scholar 

  • Hajibabaei M, Xia J, Drouin G (2006) Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. Mol Phylogenet Evol 40:208–217

    Article  CAS  PubMed  Google Scholar 

  • Herngreen GFW (1973) Palynology of Albian-Cenomanian strata of Borehole 1-QS-1-MA, State of Maranhao, Brazil. Pollen Spores 15:515–555

    Google Scholar 

  • Herngreen GFW, Dueñas Jimenez H (1990) Dating of the Cretaceous Une Formation, Colombia and the relationship with the Albian-Cenomanian African-South American microfloral province. Rev Palaeobot Palynol 66:345–359

    Article  Google Scholar 

  • Herngreen GFW, Kedves M, Rovnina LV, Smirnova SB (1996) Cretaceous palynofloral provinces: a review. In: Jansonius J, Mcgregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologists Foundation, Texas, pp 1157–1188

  • Hollander JL, Vander Wall SB, Baguley JG (2010) Evolution of seed dispersal in North American Ephedra. Evol Ecol 24:333–345

    Article  Google Scholar 

  • Huang JL, Price RA (2003) Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. Mol Biol Evol 20:435–440

    Article  CAS  PubMed  Google Scholar 

  • Huang JL, Giannasi DE, Price RA (2005) Phylogenetic relationships in Ephedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 35:48–59

    Article  CAS  PubMed  Google Scholar 

  • Ickert-Bond SM (2003) Systematics of New World Ephedra L. (Ephedraceae): integrating morphological and molecular data. Dissertation, Arizona State University

  • Ickert-Bond SM, Renner SS (2016) The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. J Syst Evol 54:1–16

    Article  Google Scholar 

  • Ickert-Bond SM, Rydin C (2011) Micromorphology of the seed envelope of Ephedra L. (Gnetales) and its relevance for the timing of evolutionary events. Int J Plant Sci 172:36–48

    Article  Google Scholar 

  • Ickert-Bond SM, Rydin C, Renner SS (2009) A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America. J Syst Evol 47:444–456

    Article  Google Scholar 

  • Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach. Sinauer Associates Inc. Publishers, Sunderland

    Google Scholar 

  • Krassilov VA (1982) Early Cretaceous flora of Mongolia. Palaeontogr Abteilung B 181:1–43

    Google Scholar 

  • Krassilov VA, Bugdaeva EV (1982) Achene-like fossils from the Lower Cretaceous of the Lake Baikal area. Rev Palaeobot Palynol 36:279–295

    Article  Google Scholar 

  • Krassilov VA, Dilcher DL, Douglas JG (1998) New ephedroid plant from the Lower Cretaceous Koonwarra Fossil Bed, Victoria, Australia. Alcheringa 22:123–133

    Article  Google Scholar 

  • Kubitzki K (1990) Gnetaceae with single order Gnetales. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. I pteridophytes and gymnosperms. Springer, Berlin, pp 378–391

    Google Scholar 

  • Lima MR (1978) Palinologia da Formação Santana (Cretáceo do nordeste do Brasil). Dissertation, Universidade de São Paulo

  • Liu ZJ, Wang X (2016) An enigmatic Ephedra-like fossil lacking micropylar tube from the Lower Cretaceous Yixian Formation of Liaoning, China. Palaeoworld 25:67–75

    Article  Google Scholar 

  • Liu HM, Ferguson DK, Hueber FM, Li CS, Wang YF (2008) Taxonomy and systematics of Ephedrites cheniae and Alloephedra xingxuei (Ephedraceae). Taxon 57:557–582

    Google Scholar 

  • Magallón S, Sanderson MJ (2002) Relationships among seed plant inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006

    Article  PubMed  Google Scholar 

  • Majumder S, D’Rozario A, Bera S (2014) Seed coat architecture of four Indian species of Ephedra and its taxonomic significance. Curr Sci 108:1984–1987

    Google Scholar 

  • Mohr BAR, Bernardes-de-Oliveira ME, Barreto AMF, Castro-Fernandes MC (2004) Gnetophyte preservation and diversity in the Early Cretaceous Crato Formation (Brazil). 7th International Organization of Palaeobotany Conference. Abstracts, p 81

  • Narvaez PL, Prámparo MB, Sabino IF (2014) First palynologic record of the Cretaceous La Yesera Formation (Salta Group), Northwestern Argentina. Rev Bras Paleontol 17:141–156

    Article  Google Scholar 

  • Osborn JM (2000) Pollen morphology and ultrastructure of gymnospermous anthophytes. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp 163–185

    Google Scholar 

  • Osborn JM, Taylor TN, de Lima MR (1993) The ultrastructure of fossil ephedroid pollen with gnetalean affinities from the Lower Cretaceous of Brazil. Rev Palaeobot Palynol 77:171–184

    Article  Google Scholar 

  • Papú OH (2002) Nueva microflora de edad maastrichtiana en la localidad de Calmu-Co, Sur de Mendoza, Argentina. Ameghiniana 39:415–426

    Google Scholar 

  • Pearson HHW (1929) Gnetales. Cambridge University Press, London

    Google Scholar 

  • Pocock SAJ, Vasanthy G (1988) Cornetipollis reticulata, a new pollen with angiospermid features from Upper Triassic (Carnian) sediments of Arizona (USA), with notes on Equisetosporites. Rev Palaeobot Palynol 55:337–356

    Article  Google Scholar 

  • Pons D (1988) Le Mésozoïque de Colombie. Macroflores et microflores. CNRS ed., Paris, p 168

    Google Scholar 

  • Prámparo MB (1988a) Nuevos aportes a la palinología de la Formación La Cantera, Cretácico de la Cuenca de San Luis, en su localidad tipo. 4° Congreso Argentino de Paleontología y Biooestratigrafía. Actas, pp 41–50

  • Prámparo MB (1988b) Esporas triletes levigadas y apiculadas de la Formación La Cantera (Cretácico de la Cuenca de San Luis) en su localidad tipo. 4° Congreso Argentino de Paleontología y Bioestratigrafía. Actas, pp 51–62

  • Prámparo MB (1989) Palinología estratigráfica del Cretácico de la Cuenca de San Luis. Dissertation, Universidad Nacional de Río Cuarto

  • Prámparo MB (1990) Palynostratigraphy of the Lower Cretaceous of the San Luis Basin, Argentina. Its place in the Lower Cretaceous floral provinces pattern. Neues J Geol Paläontol Abh 181:255–266

    Google Scholar 

  • Prámparo MB (1994) The Lower Cretaceous microflora of La Cantera Formation, San Luis Basin: its correlation with other Cretaceous palynofloras of Argentina. Cret Res 15:193–203

    Article  Google Scholar 

  • Prámparo MB (1999) Microfitoplancton orgánico del Cretácico inferior de la cuenca de San Luis. Parte I: Scenedesmaceae y Chlorococcaceae. Asoc Paleontol Argent Publ Esp 6:39–42

    Google Scholar 

  • Prámparo MB, Volkheimer W (1999) Palinología del Miembro Avilé (Formación Agrio, Cretácico Inferior) en el cerro de la Parva, Neuquén. Ameghiniana 36:217–227

    Google Scholar 

  • Prámparo MB, Quattrocchio ME, Gandolfo MA, Zamaloa Mdel C, Romero E (2007) Historia evolutiva de las angiospermas (Cretácico-Paleógeno) en Argentina a través de los registros paleoflorísticos. Ameghiniana Publicación Especial 11:157–172

    Google Scholar 

  • Puebla GG (2004) La megaflora de la Formación La Cantera (Cretácico Temprano) Sierra del Gigante, San Luis, Argentina. Tesis de Licenciatura. Universidad Nacional de San Luis.

  • Puebla GG (2009) A new angiosperm leaf morphotype from the Early Cretaceous (late Aptian) of San Luis Basin. Ameghiniana 46:557–566

    Google Scholar 

  • Puebla GG (2010) Evolución de las comunidades vegetales basada en el estúdio de la flora fóssil presente en la Formación La Cantera, Cretácico Temprano, Cuenca de San Luis. Dissertation, Universidad Nacional de Cuyo

  • Puebla GG, Mego N, Prámparo MB (2012) Asociación de briófitas de la Formación La Cantera, Aptiano tardio, Cuenca de San Luis, Argentina. Ameghiniana 49:217–229

    Article  Google Scholar 

  • Quattrocchio ME, Martinez MA, Carpinelli Pavisich A, Volkheimer W (2006) Early Cretaceous palynostratigraphy, palynofacies and palaeoenvironments of well sections in northeastern Tierra del Fuego, Argentina. Cret Res 27:584–602

    Article  Google Scholar 

  • Ricardi-Branco F, Torres M, Tavares SS, De Souza Carvalho I, Tavares PGE, Campos ACA (2013) Itajuba yansanae gen. and sp. nov. of Gnetales, Araripe Basin (Albian–Aptian) in Northeast Brazil. In: Zhang Y, Ray P (eds) Climate change and regional/local responses. InTech, Rijeka

    Google Scholar 

  • Rivarola D, Di Paola E (1992) Secuencias mesozoicas de la Sierra de Las Quijadas. Paleoambientes y paleoclimas. Provincia de San Luis. República Argentina. 1° Encontro Sobre Sedimentacao Continental Bacias Mesozoicas Brasileiras. Acta Geol Leopold 15:43–145

    Google Scholar 

  • Rydin C, Friis EM (2005) Pollen germination in Welwitschia mirabilis Hook f: differences between the polyplicate pollen producing genera of the Gnetales. Grana 44:137–141

    Article  Google Scholar 

  • Rydin C, Hoorn C (2016) The Gnetales: past and present. Grana 55:1–4

    Article  Google Scholar 

  • Rydin C, Källersjö M, Friis EM (2002) Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int J Plant Sci 163:197–214

    Article  CAS  Google Scholar 

  • Rydin C, Mohr BAR, Friis EM (2003) Cratonia cotyledon gen. et sp. nov.: a unique Cretaceous seedling related to Welwitschia. Proceed R Soc Lond B 270:29–32

    Article  Google Scholar 

  • Rydin C, Pedersen KR, Friis EM (2004) On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proc Natl Acad Sci USA 101:16571–16576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rydin C, Pedersen KR, Crane PR, Friis EM (2006a) Former diversity of Ephedra (Gnetales): evidence from Early Cretaceous seeds from Portugal and North America. Ann Bot 98:123–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Rydin C, Wu S, Friis EM (2006b) Liaoxia (Gnetales): ephedroids from the Early Cretaceous Yixian Formation in Liaoning, northeastern China. Plant Syst Evol 262:239–265

    Article  Google Scholar 

  • Rydin C, Khodabandeh A, Endress PK (2010) The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Bot J Linn Soc 163:387–430

    Article  PubMed  Google Scholar 

  • Scotese CR, Boucot AJ, McKerrow MS (1999) Gondwanan palaeogeography and palaeoclimatology. J Afr Earth Sci 28:99–114

    Article  Google Scholar 

  • Stapf O (1889) Die Arten der Gattung Ephedra. Denkschr Kaiserl Akad Wiss, Wien Math-Naturwiss Kl 56:1–112

  • Steeves MW, Barghoorn ES (1959) The pollen of Ephedra. J Arnold Arbor Harv Univ 40:221–255

    Google Scholar 

  • Sun G, Zheng SL, Dilcher DL, Wang YD, Mei SW (2001) Early angiosperms and their associated plants from Western Liaoning, China. Scientific Technol Educ Publish House, Shanghai

    Google Scholar 

  • Tao J, Yang Y (2003) Alloephedra xingxuei gen. et sp. nov., an Early Cretaceous member of Ephedraceae from Dalazi Formation in Yanji Basin, Jilin Province of China. Acta Palaeontol Sin 42:208–215

    Google Scholar 

  • Traverse NO (1985) Review of early tertiary sporomorph paleoecology. Am Assoc Strat Palynol Contrib Ser 15:1–92

    Google Scholar 

  • Traverse NO (1988) Plant evolution dances to a different beat: plant and animal evolutionary mechanisms compared. Hist Biol 1:277–301

    Article  Google Scholar 

  • Vallati P (2006) Las primeras angiospermas en el Cretácico de Cuenca Neuquina (Centro Oeste de Argentina): Aspectos geológicos relacionados. Rev Bras Paleontol 9:83–92

    Article  Google Scholar 

  • Volkheimer W, Melendi DL (1976) Palinomorfos como fósiles guía. Tercera parte: Técnicas de Laboratorio palinológico. Rev Min Geol Miner 34:119–130

    Google Scholar 

  • Volkheimer W, Prámparo MB (1984) Datos palinológicos del Cretácico en el borde austral de la Cuenca Neuquina, localidad Estancia Santa Elena, Argentina. Parte I: especies terrestres. III Congreso Latinoamericano de Paleontología (México), pp 269–279

  • Volkheimer W, Caccavari de Filice M, Sepúlveda E (1977) Datos palinológicos de la Formación Ortiz (Grupo La Amarga), Cretácico Inferior de la Cuenca Neuquina (República Argentina). Ameghiniana 14:59–74

    Google Scholar 

  • Wang Z (2004) A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny. Ann Bot 94:281–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zheng SL (2010) Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chin Sci Bull 55:1511–1519

    Article  Google Scholar 

  • Wilson LR (1962) A Permian fungus spore from the Flowerpot Formation of Oklahoma. Okla Geol. Notes 22:91–96

    Google Scholar 

  • Wu XW, He YL, Mei SW (1986) Discovery of Ephedrites from the Lower Jurassic Xiaomeigou Formation, Qinghai. Acta Palaeobot Palynol Sin 8:13–21

    Google Scholar 

  • Wu S, Duan S, Mohr B, Pedersen KR, Friis EM (2000) Early Cretaceous diversity of Gnetales: macro- and mesofossil evidence from China, Brazil, and Portugal. The Sixth Conference of the International Organization of Palaeobotany, Qinhuangdao. Abstract, China, pp 37–38

  • Yang Y (2001) Ontogenetic and metamorphic patterns of female reproductive organs of Ephedra sinica Stapf (Ephedraceae). Acta Bot Sin 43:1011–1017

    CAS  Google Scholar 

  • Yang Y (2004) Ontogeny of triovulate cones of Ephedra intermedia and origin of the outer envelope of ovules of Ephedraceae. Am J Bot 91:361–368

    Article  PubMed  Google Scholar 

  • Yang Y (2007) Asymmetrical development of biovulate cones resulting in uniovulate cones in Ephedra rhytidosperma (Ephedraceae). Plant Syst Evol 264:175–182

    Article  Google Scholar 

  • Yang Y (2011) Cuticular diversity of the seed outer envelope in Ephedra (Ephedraceae) with a discussion on its systematic significance. J Trop Subtrop Bot 19:1–15

    Google Scholar 

  • Yang Y (2013) A numerical analysis of Ephedra L. based on reproductive features. Bangl J Plant Taxon 20:51–60

    CAS  Google Scholar 

  • Yang Y, Ferguson DK (2015) Macrofossil evidence unveiling evolution and ecology of early Ephedraceae. Perspect Plant Ecol Evol Syst 17:331–346

    Article  Google Scholar 

  • Yang Y, Wang Q (2013) The Earliest Fleshy Cone of Ephedra from the Early Cretaceous Yixian Formation of Northeast China. Public Lib Sci One 8:e53652. doi:10.1371/journal.pone.0053652

    CAS  Google Scholar 

  • Yang Y, Geng BY, Dilcher DL, Chen ZD, Lott TA (2005) Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. Am J Bot 92:231–241

    Article  PubMed  Google Scholar 

  • Yang Y, Lin L, Ferguson DK (2015) Parallel evolution of leaf morphology in gnetophytes. Org Divers Evol 15:651–662

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks A. Zamuner, M.A. Gandolfo, C. Rydin and S. Ickert-Bond for helpful suggestions and valuable comments on early version of manuscripts. Thanks are also due to Y. Yang and an anonymous reviewer for their revisions on the manuscript. We thank the INFIVE, Servicio de Microscopía from La Plata University, and the LABMEM from San Luis University (UNSL) for the use of labs and fluorescence microscopes. Special thanks are due to R. Bottero (IANIGLA, CCT Mendoza) for help with the geological map. Field-work was supported by Project Grants P-3-2-0114 FCFMyN–UNSL (2014–2017) and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela G. Puebla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puebla, G.G., Iglesias, A., Gómez, M.A. et al. Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina. J Plant Res 130, 975–988 (2017). https://doi.org/10.1007/s10265-017-0953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0953-1

Keywords

Navigation