Journal of Plant Research

, Volume 130, Issue 6, pp 975–988 | Cite as

Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina

  • Gabriela G. Puebla
  • Ari Iglesias
  • María A. Gómez
  • Mercedes B. Prámparo
Regular Paper


Fossil plants from the Lower Cretaceous (upper Aptian) of the La Cantera Formation, Argentina, are described. The fossils studied represent a leafy shooting system with several orders of articulated and striated axes and attached leaves with unequivocal ephedroid affinity. We also found associated remains of ovulate cones with four whorls of sterile bracts, which contain two female reproductive units (FRU). Ovulate cone characters fit well within the genus Ephedra. Special characters in the ovulate cones including an outer seed envelope with two types of trichomes, allowed us to consider our remains as a new Ephedra species. Abundant dispersed ephedroid pollen obtained from the macrofossil-bearing strata also confirms the abundance of Ephedraceae in the basin. The co-occurrence of abundant fossil of Ephedra (adapted to dry habitats) associated with thermophilic cheirolepideacean conifer pollen (Classopollis) in the unit would suggest marked seasonality at the locality during the Early Cretaceous. Furthermore, the floristic association is linked to dry sensitive rocks in the entire section. The macro- and microflora from San Luis Basin are similar in composition to several Early Cretaceous floras from the Northern Gondwana floristic province, but it may represent one of the southernmost records of an arid biome in South America.


Central western Argentina Early Cretaceous Ephedra Gnetales 



The authors would like to thanks A. Zamuner, M.A. Gandolfo, C. Rydin and S. Ickert-Bond for helpful suggestions and valuable comments on early version of manuscripts. Thanks are also due to Y. Yang and an anonymous reviewer for their revisions on the manuscript. We thank the INFIVE, Servicio de Microscopía from La Plata University, and the LABMEM from San Luis University (UNSL) for the use of labs and fluorescence microscopes. Special thanks are due to R. Bottero (IANIGLA, CCT Mendoza) for help with the geological map. Field-work was supported by Project Grants P-3-2-0114 FCFMyN–UNSL (2014–2017) and CONICET.


  1. Anderson JM, Anderson HM (1985) Palaeoflora of Southern Africa. Prodromus of South African megafloras. Devonian to Lower Cretaceous. Balkema, RotterdamGoogle Scholar
  2. Archangelsky A, Llorens M (2009) Palinología de la Formación Kachaike, Cretácico Inferior de la Cuenca Austral, provincia de Santa Cruz. Granos de polen de Gimnospermas. Ameghiniana 46:225–234Google Scholar
  3. Arcucci AB, Prámparo MB, Codorniú L, Giordano G, Castillo Elías G, Puebla G, Mego N, Gómez M, Bustos Escalona E (2015) Biotic assemblages from lower Cretaceous lacustrine systems, San Luis Basin, central-western Argentina. Bol Geol Minero 126:109–128Google Scholar
  4. Azéma C, Boltenhagen E (1974) Pollen du Crétacé moyen du Gabon attribué aux Ephedrales. Laboratoire de paléobotanique, Université des Sciences et Techniques. Paléobiol Cont 5:1–37Google Scholar
  5. Baldoni AM (1992) Palynology of the Lower Lefipan Formation (Upper Cretaceous) of Barranca de los Perros, Chubut Province, Argentina. Part I. Cryptogam spores and gymnosperm pollen. Palynology 16:117–136CrossRefGoogle Scholar
  6. Bernardes de Oliveira ME, Dilcher DL, Franca Barreto AM, Ricardi-Branco F, Mohr B, De Castro-Fernandes MC (2003) La flora del Miembro Crato, Formación Santana, Cretácico Temprano de la Cuenca de Araripe, noreste del Brasil. 10° Congreso Geológico Chileno. Universidad de Concepción, ChileGoogle Scholar
  7. Bierhorst DW (1971) Morphology of vascular plants. Macmillan, New YorkGoogle Scholar
  8. Bolinder K, Norbäck Ivarsson L, Humphreys AM, Ickert-Bond SM, Han F, Hoorn C, Rydin C (2016) Pollen morphology of Ephedra (Gnetales) and its evolutionary implications. Grana 55:24–51CrossRefGoogle Scholar
  9. Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brenner GJ (1968) Middle Cretaceous spores and pollen from Northeastern Peru. Pollen Spores 10:341–383Google Scholar
  11. Brenner GJ (1976) Middle Cretaceous floral provinces and early migrations of angiosperms. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 23–47Google Scholar
  12. Cao Z, Wu S, Zhang P, Li J (1998) Discovery of fossil monocotyledons from Yixian Formation, western Liaoning. Chin Sci Bull 43:230–233CrossRefGoogle Scholar
  13. Chamberlain CJ (1935) Gymnosperms. Structure and evolution. University of Chicago Press, ChicagoGoogle Scholar
  14. Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci 97:4086–4091PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chumakov NM, Zharkov MA, Herman AB, Doludenko MP, Kalandadze NM, Lebedev EL, Ponomareko AG, Rautian AS (1995) Climatic belts of the mid-Cretaceous time. Stratigr Geol Correl 3:241–260Google Scholar
  16. Cladera G, Del Fueyo GM, Villar de Seoane L, Archangelsky S (2007) Early Cretaceous riparian vegetation in Patagonia, Argentina. Rev Mus Argent Cienc Nat 9:49–58CrossRefGoogle Scholar
  17. Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard 72:716–793CrossRefGoogle Scholar
  18. Crane PR (1996) The fossil history of the Gnetales. Int J Plant Sci 157:50–57CrossRefGoogle Scholar
  19. Crane PR, Lidgard SH (1989) Paleolatitudinal gradients and temporal trends in Cretaceous floristic diversity. Science 246:675–678PubMedCrossRefGoogle Scholar
  20. Crane PR, Upchurch GR Jr (1987) Drewria potomacensis gen. et sp. nov., an Early Cretaceous member of Gnetales from the Potomac Group of Virginia. Am J Bot 74:1722–1736CrossRefGoogle Scholar
  21. Crane PR, Herendeen P, Friis EM (2004) Fossils and plant phylogeny. Am J Bot 91:1683–1699PubMedCrossRefGoogle Scholar
  22. Criado Roque P, Mombru CA, Moreno J (1981) Sedimentitas mesozoicas. In: Geología y Recursos Naturales de la Provincia de San Luis. Relatorio del VII Congreso Geológico Argentino, pp 79–96Google Scholar
  23. De Lima MR (1980) Palinologia da Formação Santana (Cretáceo do Nordeste do Brasil). III. Descrição sistemática dos polens da Turma Plicates (Subturma Costates). Ameghiniana 17:15–47Google Scholar
  24. Dilcher DA, Bernardes-de-Oliveira MEC, Pons D, Lott TA (2005) Welwitschiaceae from the Lower Cretaceous of Northeastern Brazil. Am J Bot 92:1294–1310PubMedCrossRefGoogle Scholar
  25. Dino R, Pocknall DT, Dettmann ME (1999) Morphology and ultrastructure of elater-bearing pollen from the Albian to Cenomanian of Brazil and Ecuador: implications for botanical affinity. Rev Palaeobot Palynol 105:201–235CrossRefGoogle Scholar
  26. Dorken VM (2012) Leaf-morphology and leaf-anatomy in Ephedra altissima Desf. (Ephedraceae, Gnetales) and their evolutionary relevance. Feddes Repert 123:243–255CrossRefGoogle Scholar
  27. Eames AJ (1952) The relationships of Ephedrales. Phytomorphol 2:79–100Google Scholar
  28. El-Ghazaly G, Rowley JR (1997) Pollen wall of Ephedra foliata. Palynology 21:7–18CrossRefGoogle Scholar
  29. Flores M (1969) El Bolsón de Las Salinas en la Provincia de San Luis. Jorn Geol Argent 1:311–327Google Scholar
  30. Flores M, Criado Roque P (1972) Cuenca de San Luis. In: Turner JCM (ed) Geología Regional Argentina. Academia Nacional de Ciencias Córdoba, Córdoba, pp 567–580Google Scholar
  31. Foster AS (1972) Venation patterns in the leaves of Ephedra. J Arnold Arbor 53:364–385Google Scholar
  32. Friedman WE (1990) Sexual reproduction in Ephedra nevadensis (Ephedraceae): further evidence of double fertilization in a non-flowering seed plant. Am J Bot 77:1582–1598CrossRefGoogle Scholar
  33. Friis EM, Pedersen KR, Crane PR (2014) Welwitschioid diversity in the Early Cretaceous: evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53:175–196CrossRefGoogle Scholar
  34. Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants. 3rd edn. W. Freeman, New YorkGoogle Scholar
  35. Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W (1996) Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol Biol Evol 13:383–396PubMedCrossRefGoogle Scholar
  36. Gugerli F, Sperisen C, Büchler U, Brunner I, Brodbeck S, Palmer JD, Qiu YL (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phylogenet Evol 21:167–175PubMedCrossRefGoogle Scholar
  37. Guo SX, Wu XW (2000) Ephedrites from Latest Jurrassic Yixian Formation in western Liaoning, Northeast China. Acta Palaeontol Sin 39:81–91Google Scholar
  38. Guo SX, Sha JG, Bian LZ, Qiu YL (2009) Male spike strobiles with Gnetum affinity from the Early Cretaceous in western Liaoning, Northeast China. J Syst Evol 47:93–102CrossRefGoogle Scholar
  39. Hajibabaei M, Xia J, Drouin G (2006) Seed plant phylogeny: gnetophytes are derived conifers and a sister group to Pinaceae. Mol Phylogenet Evol 40:208–217PubMedCrossRefGoogle Scholar
  40. Herngreen GFW (1973) Palynology of Albian-Cenomanian strata of Borehole 1-QS-1-MA, State of Maranhao, Brazil. Pollen Spores 15:515–555Google Scholar
  41. Herngreen GFW, Dueñas Jimenez H (1990) Dating of the Cretaceous Une Formation, Colombia and the relationship with the Albian-Cenomanian African-South American microfloral province. Rev Palaeobot Palynol 66:345–359CrossRefGoogle Scholar
  42. Herngreen GFW, Kedves M, Rovnina LV, Smirnova SB (1996) Cretaceous palynofloral provinces: a review. In: Jansonius J, Mcgregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologists Foundation, Texas, pp 1157–1188Google Scholar
  43. Hollander JL, Vander Wall SB, Baguley JG (2010) Evolution of seed dispersal in North American Ephedra. Evol Ecol 24:333–345CrossRefGoogle Scholar
  44. Huang JL, Price RA (2003) Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. Mol Biol Evol 20:435–440PubMedCrossRefGoogle Scholar
  45. Huang JL, Giannasi DE, Price RA (2005) Phylogenetic relationships in Ephedra (Ephedraceae) inferred from chloroplast and nuclear DNA sequences. Mol Phylogenet Evol 35:48–59PubMedCrossRefGoogle Scholar
  46. Ickert-Bond SM (2003) Systematics of New World Ephedra L. (Ephedraceae): integrating morphological and molecular data. Dissertation, Arizona State UniversityGoogle Scholar
  47. Ickert-Bond SM, Renner SS (2016) The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. J Syst Evol 54:1–16CrossRefGoogle Scholar
  48. Ickert-Bond SM, Rydin C (2011) Micromorphology of the seed envelope of Ephedra L. (Gnetales) and its relevance for the timing of evolutionary events. Int J Plant Sci 172:36–48CrossRefGoogle Scholar
  49. Ickert-Bond SM, Rydin C, Renner SS (2009) A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America. J Syst Evol 47:444–456CrossRefGoogle Scholar
  50. Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach. Sinauer Associates Inc. Publishers, SunderlandGoogle Scholar
  51. Krassilov VA (1982) Early Cretaceous flora of Mongolia. Palaeontogr Abteilung B 181:1–43Google Scholar
  52. Krassilov VA, Bugdaeva EV (1982) Achene-like fossils from the Lower Cretaceous of the Lake Baikal area. Rev Palaeobot Palynol 36:279–295CrossRefGoogle Scholar
  53. Krassilov VA, Dilcher DL, Douglas JG (1998) New ephedroid plant from the Lower Cretaceous Koonwarra Fossil Bed, Victoria, Australia. Alcheringa 22:123–133CrossRefGoogle Scholar
  54. Kubitzki K (1990) Gnetaceae with single order Gnetales. In: Kramer KU, Green PS (eds) The families and genera of vascular plants, vol. I pteridophytes and gymnosperms. Springer, Berlin, pp 378–391Google Scholar
  55. Lima MR (1978) Palinologia da Formação Santana (Cretáceo do nordeste do Brasil). Dissertation, Universidade de São PauloGoogle Scholar
  56. Liu ZJ, Wang X (2016) An enigmatic Ephedra-like fossil lacking micropylar tube from the Lower Cretaceous Yixian Formation of Liaoning, China. Palaeoworld 25:67–75CrossRefGoogle Scholar
  57. Liu HM, Ferguson DK, Hueber FM, Li CS, Wang YF (2008) Taxonomy and systematics of Ephedrites cheniae and Alloephedra xingxuei (Ephedraceae). Taxon 57:557–582Google Scholar
  58. Magallón S, Sanderson MJ (2002) Relationships among seed plant inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006PubMedCrossRefGoogle Scholar
  59. Majumder S, D’Rozario A, Bera S (2014) Seed coat architecture of four Indian species of Ephedra and its taxonomic significance. Curr Sci 108:1984–1987Google Scholar
  60. Mohr BAR, Bernardes-de-Oliveira ME, Barreto AMF, Castro-Fernandes MC (2004) Gnetophyte preservation and diversity in the Early Cretaceous Crato Formation (Brazil). 7th International Organization of Palaeobotany Conference. Abstracts, p 81Google Scholar
  61. Narvaez PL, Prámparo MB, Sabino IF (2014) First palynologic record of the Cretaceous La Yesera Formation (Salta Group), Northwestern Argentina. Rev Bras Paleontol 17:141–156CrossRefGoogle Scholar
  62. Osborn JM (2000) Pollen morphology and ultrastructure of gymnospermous anthophytes. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp 163–185Google Scholar
  63. Osborn JM, Taylor TN, de Lima MR (1993) The ultrastructure of fossil ephedroid pollen with gnetalean affinities from the Lower Cretaceous of Brazil. Rev Palaeobot Palynol 77:171–184CrossRefGoogle Scholar
  64. Papú OH (2002) Nueva microflora de edad maastrichtiana en la localidad de Calmu-Co, Sur de Mendoza, Argentina. Ameghiniana 39:415–426Google Scholar
  65. Pearson HHW (1929) Gnetales. Cambridge University Press, LondonGoogle Scholar
  66. Pocock SAJ, Vasanthy G (1988) Cornetipollis reticulata, a new pollen with angiospermid features from Upper Triassic (Carnian) sediments of Arizona (USA), with notes on Equisetosporites. Rev Palaeobot Palynol 55:337–356CrossRefGoogle Scholar
  67. Pons D (1988) Le Mésozoïque de Colombie. Macroflores et microflores. CNRS ed., Paris, p 168Google Scholar
  68. Prámparo MB (1988a) Nuevos aportes a la palinología de la Formación La Cantera, Cretácico de la Cuenca de San Luis, en su localidad tipo. 4° Congreso Argentino de Paleontología y Biooestratigrafía. Actas, pp 41–50Google Scholar
  69. Prámparo MB (1988b) Esporas triletes levigadas y apiculadas de la Formación La Cantera (Cretácico de la Cuenca de San Luis) en su localidad tipo. 4° Congreso Argentino de Paleontología y Bioestratigrafía. Actas, pp 51–62Google Scholar
  70. Prámparo MB (1989) Palinología estratigráfica del Cretácico de la Cuenca de San Luis. Dissertation, Universidad Nacional de Río CuartoGoogle Scholar
  71. Prámparo MB (1990) Palynostratigraphy of the Lower Cretaceous of the San Luis Basin, Argentina. Its place in the Lower Cretaceous floral provinces pattern. Neues J Geol Paläontol Abh 181:255–266Google Scholar
  72. Prámparo MB (1994) The Lower Cretaceous microflora of La Cantera Formation, San Luis Basin: its correlation with other Cretaceous palynofloras of Argentina. Cret Res 15:193–203CrossRefGoogle Scholar
  73. Prámparo MB (1999) Microfitoplancton orgánico del Cretácico inferior de la cuenca de San Luis. Parte I: Scenedesmaceae y Chlorococcaceae. Asoc Paleontol Argent Publ Esp 6:39–42Google Scholar
  74. Prámparo MB, Volkheimer W (1999) Palinología del Miembro Avilé (Formación Agrio, Cretácico Inferior) en el cerro de la Parva, Neuquén. Ameghiniana 36:217–227Google Scholar
  75. Prámparo MB, Quattrocchio ME, Gandolfo MA, Zamaloa Mdel C, Romero E (2007) Historia evolutiva de las angiospermas (Cretácico-Paleógeno) en Argentina a través de los registros paleoflorísticos. Ameghiniana Publicación Especial 11:157–172Google Scholar
  76. Puebla GG (2004) La megaflora de la Formación La Cantera (Cretácico Temprano) Sierra del Gigante, San Luis, Argentina. Tesis de Licenciatura. Universidad Nacional de San Luis.Google Scholar
  77. Puebla GG (2009) A new angiosperm leaf morphotype from the Early Cretaceous (late Aptian) of San Luis Basin. Ameghiniana 46:557–566Google Scholar
  78. Puebla GG (2010) Evolución de las comunidades vegetales basada en el estúdio de la flora fóssil presente en la Formación La Cantera, Cretácico Temprano, Cuenca de San Luis. Dissertation, Universidad Nacional de CuyoGoogle Scholar
  79. Puebla GG, Mego N, Prámparo MB (2012) Asociación de briófitas de la Formación La Cantera, Aptiano tardio, Cuenca de San Luis, Argentina. Ameghiniana 49:217–229CrossRefGoogle Scholar
  80. Quattrocchio ME, Martinez MA, Carpinelli Pavisich A, Volkheimer W (2006) Early Cretaceous palynostratigraphy, palynofacies and palaeoenvironments of well sections in northeastern Tierra del Fuego, Argentina. Cret Res 27:584–602CrossRefGoogle Scholar
  81. Ricardi-Branco F, Torres M, Tavares SS, De Souza Carvalho I, Tavares PGE, Campos ACA (2013) Itajuba yansanae gen. and sp. nov. of Gnetales, Araripe Basin (Albian–Aptian) in Northeast Brazil. In: Zhang Y, Ray P (eds) Climate change and regional/local responses. InTech, RijekaGoogle Scholar
  82. Rivarola D, Di Paola E (1992) Secuencias mesozoicas de la Sierra de Las Quijadas. Paleoambientes y paleoclimas. Provincia de San Luis. República Argentina. 1° Encontro Sobre Sedimentacao Continental Bacias Mesozoicas Brasileiras. Acta Geol Leopold 15:43–145Google Scholar
  83. Rydin C, Friis EM (2005) Pollen germination in Welwitschia mirabilis Hook f: differences between the polyplicate pollen producing genera of the Gnetales. Grana 44:137–141CrossRefGoogle Scholar
  84. Rydin C, Hoorn C (2016) The Gnetales: past and present. Grana 55:1–4CrossRefGoogle Scholar
  85. Rydin C, Källersjö M, Friis EM (2002) Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int J Plant Sci 163:197–214CrossRefGoogle Scholar
  86. Rydin C, Mohr BAR, Friis EM (2003) Cratonia cotyledon gen. et sp. nov.: a unique Cretaceous seedling related to Welwitschia. Proceed R Soc Lond B 270:29–32CrossRefGoogle Scholar
  87. Rydin C, Pedersen KR, Friis EM (2004) On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. Proc Natl Acad Sci USA 101:16571–16576PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rydin C, Pedersen KR, Crane PR, Friis EM (2006a) Former diversity of Ephedra (Gnetales): evidence from Early Cretaceous seeds from Portugal and North America. Ann Bot 98:123–140PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rydin C, Wu S, Friis EM (2006b) Liaoxia (Gnetales): ephedroids from the Early Cretaceous Yixian Formation in Liaoning, northeastern China. Plant Syst Evol 262:239–265CrossRefGoogle Scholar
  90. Rydin C, Khodabandeh A, Endress PK (2010) The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Bot J Linn Soc 163:387–430PubMedCrossRefGoogle Scholar
  91. Scotese CR, Boucot AJ, McKerrow MS (1999) Gondwanan palaeogeography and palaeoclimatology. J Afr Earth Sci 28:99–114CrossRefGoogle Scholar
  92. Stapf O (1889) Die Arten der Gattung Ephedra. Denkschr Kaiserl Akad Wiss, Wien Math-Naturwiss Kl 56:1–112Google Scholar
  93. Steeves MW, Barghoorn ES (1959) The pollen of Ephedra. J Arnold Arbor Harv Univ 40:221–255Google Scholar
  94. Sun G, Zheng SL, Dilcher DL, Wang YD, Mei SW (2001) Early angiosperms and their associated plants from Western Liaoning, China. Scientific Technol Educ Publish House, ShanghaiGoogle Scholar
  95. Tao J, Yang Y (2003) Alloephedra xingxuei gen. et sp. nov., an Early Cretaceous member of Ephedraceae from Dalazi Formation in Yanji Basin, Jilin Province of China. Acta Palaeontol Sin 42:208–215Google Scholar
  96. Traverse NO (1985) Review of early tertiary sporomorph paleoecology. Am Assoc Strat Palynol Contrib Ser 15:1–92Google Scholar
  97. Traverse NO (1988) Plant evolution dances to a different beat: plant and animal evolutionary mechanisms compared. Hist Biol 1:277–301CrossRefGoogle Scholar
  98. Vallati P (2006) Las primeras angiospermas en el Cretácico de Cuenca Neuquina (Centro Oeste de Argentina): Aspectos geológicos relacionados. Rev Bras Paleontol 9:83–92CrossRefGoogle Scholar
  99. Volkheimer W, Melendi DL (1976) Palinomorfos como fósiles guía. Tercera parte: Técnicas de Laboratorio palinológico. Rev Min Geol Miner 34:119–130Google Scholar
  100. Volkheimer W, Prámparo MB (1984) Datos palinológicos del Cretácico en el borde austral de la Cuenca Neuquina, localidad Estancia Santa Elena, Argentina. Parte I: especies terrestres. III Congreso Latinoamericano de Paleontología (México), pp 269–279Google Scholar
  101. Volkheimer W, Caccavari de Filice M, Sepúlveda E (1977) Datos palinológicos de la Formación Ortiz (Grupo La Amarga), Cretácico Inferior de la Cuenca Neuquina (República Argentina). Ameghiniana 14:59–74Google Scholar
  102. Wang Z (2004) A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny. Ann Bot 94:281–288PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang X, Zheng SL (2010) Whole fossil plants of Ephedra and their implications on the morphology, ecology and evolution of Ephedraceae (Gnetales). Chin Sci Bull 55:1511–1519CrossRefGoogle Scholar
  104. Wilson LR (1962) A Permian fungus spore from the Flowerpot Formation of Oklahoma. Okla Geol. Notes 22:91–96Google Scholar
  105. Wu XW, He YL, Mei SW (1986) Discovery of Ephedrites from the Lower Jurassic Xiaomeigou Formation, Qinghai. Acta Palaeobot Palynol Sin 8:13–21Google Scholar
  106. Wu S, Duan S, Mohr B, Pedersen KR, Friis EM (2000) Early Cretaceous diversity of Gnetales: macro- and mesofossil evidence from China, Brazil, and Portugal. The Sixth Conference of the International Organization of Palaeobotany, Qinhuangdao. Abstract, China, pp 37–38Google Scholar
  107. Yang Y (2001) Ontogenetic and metamorphic patterns of female reproductive organs of Ephedra sinica Stapf (Ephedraceae). Acta Bot Sin 43:1011–1017Google Scholar
  108. Yang Y (2004) Ontogeny of triovulate cones of Ephedra intermedia and origin of the outer envelope of ovules of Ephedraceae. Am J Bot 91:361–368PubMedCrossRefGoogle Scholar
  109. Yang Y (2007) Asymmetrical development of biovulate cones resulting in uniovulate cones in Ephedra rhytidosperma (Ephedraceae). Plant Syst Evol 264:175–182CrossRefGoogle Scholar
  110. Yang Y (2011) Cuticular diversity of the seed outer envelope in Ephedra (Ephedraceae) with a discussion on its systematic significance. J Trop Subtrop Bot 19:1–15Google Scholar
  111. Yang Y (2013) A numerical analysis of Ephedra L. based on reproductive features. Bangl J Plant Taxon 20:51–60Google Scholar
  112. Yang Y, Ferguson DK (2015) Macrofossil evidence unveiling evolution and ecology of early Ephedraceae. Perspect Plant Ecol Evol Syst 17:331–346CrossRefGoogle Scholar
  113. Yang Y, Wang Q (2013) The Earliest Fleshy Cone of Ephedra from the Early Cretaceous Yixian Formation of Northeast China. Public Lib Sci One 8:e53652. doi: 10.1371/journal.pone.0053652 Google Scholar
  114. Yang Y, Geng BY, Dilcher DL, Chen ZD, Lott TA (2005) Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. Am J Bot 92:231–241PubMedCrossRefGoogle Scholar
  115. Yang Y, Lin L, Ferguson DK (2015) Parallel evolution of leaf morphology in gnetophytes. Org Divers Evol 15:651–662CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Gabriela G. Puebla
    • 1
  • Ari Iglesias
    • 2
  • María A. Gómez
    • 3
  • Mercedes B. Prámparo
    • 1
  1. 1.Unidad de Paleopalinología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales Centro Científico Tecnológico, UNCuyo-CONICETMendozaArgentina
  2. 2.Instituto de Investigaciones en Biodiversidad y Medioambiente UNCO-CONICETSan Carlos de BarilocheArgentina
  3. 3.Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San Luis CONICETSan LuisArgentina

Personalised recommendations