Journal of Plant Research

, Volume 130, Issue 5, pp 929–940 | Cite as

Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid

Regular Paper

Abstract

Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I–III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

Keywords

Abiotic stress Abscisic acid SnRK Poplar 

Abbreviations

ABA

Abscisic acid

SnRK2

SNF1-related protein kinases 2

References

  1. Arend M, Schnitzler JP, Ehlting B, Hänsch R, Lange T, Rennenberg H, Himmelbach A, Grill E, Fromm J (2009) Expression of the Arabidopsis mutant ABI1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars. Plant Physiol 151:2110–2119CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boudsocq M, Barbier-Brygoo H, Laurière C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41756–41766Google Scholar
  3. Caldeira CF, Bosio M, Parent B, Jeanguenin L, Chaumont F, Tardieu F (2014) A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. Plant Physiol 164:1718–1730CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333CrossRefPubMedGoogle Scholar
  5. Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893CrossRefPubMedGoogle Scholar
  6. Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gómez-Porras J, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber M (2007) Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genet 8:260CrossRefGoogle Scholar
  8. Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748CrossRefPubMedGoogle Scholar
  9. Higo K, Ugawa Y, Iwamoto U, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucl Acids Res 26:358–359.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052CrossRefPubMedGoogle Scholar
  11. Hirayama T, Umezawa T (2010) The PP2C-SnRK2 complex: the central regulator of an abscisic acid signaling pathway. Plant Signal Behav 5:160–163CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868CrossRefPubMedGoogle Scholar
  13. Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang Z, Tang J, Duan W, Wang Z, Song X, Hou X (2015) Molecular evolution, characterization, and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp. chinensis). Front Plant Sci 6:879PubMedPubMedCentralGoogle Scholar
  15. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363CrossRefPubMedGoogle Scholar
  16. Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1—related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177CrossRefPubMedPubMedCentralGoogle Scholar
  17. Komatsu S, Hossain Z (2013) Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop. Front Plant Sci 4:71PubMedPubMedCentralGoogle Scholar
  18. Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li JQ, Wang LH, Zhan QW, Chen Y (2010) Establishment of sorghum EST-SSR marker and its preliminary application to sudangrass. Prat Sci 27:112–117.Google Scholar
  20. Liu Q, Wang Z, Xu X, Zhang H, Li C (2015) Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). PLoS One 10:e0134753CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49CrossRefPubMedGoogle Scholar
  22. Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2010) Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol 51:842–847CrossRefPubMedGoogle Scholar
  23. Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32:959–970CrossRefPubMedGoogle Scholar
  24. Narusaka Y, Nakashima K, Shinwari Z, Sakuma Y, Furihara T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high salinity stresses. Plant J 34:137–148CrossRefPubMedGoogle Scholar
  25. Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol 149:825–834CrossRefPubMedPubMedCentralGoogle Scholar
  26. Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34:868–887CrossRefPubMedGoogle Scholar
  27. Osakabe Y, Kawaoka A, Nishikubo N, Osakabe K (2012) Responses to environmental stresses in woody plants: key to survive and longevity. J Plant Res 125:1–10CrossRefPubMedGoogle Scholar
  28. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69CrossRefPubMedGoogle Scholar
  29. Shinozaki K, Yamaguchi-Shinozak K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227CrossRefPubMedGoogle Scholar
  30. Shukla V, Mattoo AK (2008) Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol Mol Biol Plants 14:91–100.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Song X, Ohtani M, Hori C, Takebayasi A, Hiroyama R, Rejab NA, Suzuki T, Demura T, Yin T, Yu X, Zhuge Q (2015) Physical interaction between SnRK2 and PP2C is conserved in Populus trichocarpa. Plant Biotechnol 32:337–341CrossRefGoogle Scholar
  32. Song X, Yu X, Hori C, Demura T, Ohtani M, Zhuge Q (2016) Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:612PubMedPubMedCentralGoogle Scholar
  33. Sun L, Wang YP, Chen P, Ren J, Ji K, Li Q, Li P, Dai SJ, Leng P (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669CrossRefPubMedPubMedCentralGoogle Scholar
  34. Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattiveli L (2006) Transcriptome analysis of cold acclimation in barley albina and xantha mutants. Plant Physiol 141:257–270CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604CrossRefPubMedGoogle Scholar
  36. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839CrossRefPubMedPubMedCentralGoogle Scholar
  37. Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plantarum 127:167–181CrossRefGoogle Scholar
  38. Xu P, Liu D, Jiang W (2009) Cadmium effects on the organization of microtubular cytoskeleton in interphase and mitotic cells of Allium sativum. Biol Plant 53:387–390CrossRefGoogle Scholar
  39. Xue GP (2002) An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochim Biophys Acta 1577:63–72CrossRefPubMedGoogle Scholar
  40. Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483CrossRefPubMedGoogle Scholar
  41. Yu X, Ohtani M, Kusano M, Nishikubo N, Uenoyama M, Umezawa T, Saito K, Shinozaki K, Demura T (2017) Enhancement of abiotic stress tolerance in poplar by overexpression of key arabidopsis stress response genes, AtSRK2C and AtGolS2. Mol Breed 37:57CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.RIKEN Center for Sustainable Resource ScienceYokohamaJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and TechnologyNaraJapan

Personalised recommendations