Journal of Plant Research

, Volume 130, Issue 5, pp 791–807 | Cite as

Cytogenetic evidences on the evolutionary relationships between the tetraploids of the section Rhizomatosae and related diploid species (Arachis, Leguminosae)

  • Alejandra Marcela Ortiz
  • Germán Robledo
  • Guillermo Seijo
  • José Francisco Montenegro Valls
  • Graciela Inés Lavia
Regular Paper


Rhizomatosae is a taxonomic section of the South American genus Arachis, whose diagnostic character is the presence of rhizomes in all its species. This section is of particular evolutionary interest because it has three polyploid (A. pseudovillosa, A. nitida and A. glabrata, 2n = 4x = 40) and only one diploid (A. burkartii, 2n = 2x = 20) species. The phylogenetic relationships of these species as well as the polyploidy nature and the origin of the tetraploids are still controversial. The present study provides an exhaustive analysis of the karyotypes of all rhizomatous species and six closely related diploid species of the sections Erectoides and Procumbentes by cytogenetic mapping of DAPI/CMA heterochromatin bands and 5S and 18–26S rDNA loci. Chromosome banding showed variation in the DAPI heterochromatin distribution pattern, which, together with the number and distribution of rDNA loci, allowed the characterization of all species studied here. The bulk of chromosomal markers suggest that the three rhizomatous tetraploid species constitute a natural group and may have at least one common diploid ancestor. The cytogenetic data of the diploid species analyzed evidenced that the only rhizomatous diploid species—A. burkartii—has a karyotype pattern different from those of the rhizomatous tetraploids, showing that it is not likely the genome donor of the tetraploids and the non-monophyletic nature of the section Rhizomatosae. Thus, the tetraploid species should be excluded from the R genome, which should remain exclusively for A. burkartii. Instead, the karyotype features of these tetraploids are compatible with those of different species of the sections Erectoides and Procumbentes (E genome species), suggesting the hypothesis of multiple origins of these tetraploids. In addition, the polyploid nature and the group of diploid species closer to the tetraploids are discussed.


Arachis Evolutionary relationships Karyotype Heterochromatin rDNA loci Rhizomatosae 



We thank the financial support provided by the Secretaría General de Ciencia y Técnica de la Universidad Nacional del Nordeste; Consejo Nacional de Investigaciones Científicas y Técnicas and the Agencia Nacional de Promoción Científica y Tecnológica (PI 2008 No. 038, PIP No. 859, PICTO 2007 No. 099, PICTO No. 2011-0230, PICTO No. 2011-0260, PICT No. 2012 No. 1875). We also thank CNPq/Brazil for the Research Productivity Grant (312215/2013-4) to JFM Valls. G Lavia, A Ortiz, G Robledo and G Seijo are research staff membres of CONICET.


  1. Acosta MC, Moscone EA, Cocucci AA (2016) Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level. Plant Biol 18:514–526CrossRefPubMedGoogle Scholar
  2. Angelici CMLCD, Hoshino AA, Nóbile PM, Palmieri DA, Valls JFM, Gimenes MA, Lopes CR (2008) Genetic diversity in section Rhizomatosae of the genus Arachis (Fabaceae) based on microsatellite markers. Genet Mol Biol 31:79–88CrossRefGoogle Scholar
  3. Bechara MD, Moretzsohn MC, Palmieri DA, Monteiro JP, Bacci M, Martins J, Gimenes MA (2010) Phylogenetic relationships in genus Arachis based on ITS and 5.8 S rDNA sequences. BMC Plant Biol 10:255. doi: 10.1186/1471-2229-10-255 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bowman AM, Wilson GPM, Gogel BJ (1998) Evaluation of perennial peanuts (Arachis spp.) as forage on the New South Wales north coast. Trop Grassl 32:252–258Google Scholar
  5. Chalup L, Samoluk SS, Solís Neffa V, Seijo G (2015) Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping. J Plant Res 128:893–908CrossRefPubMedGoogle Scholar
  6. Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2015) InfoStat version 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  7. Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187–220Google Scholar
  8. Friend SA, Quandt D, Tallury SP, Stalker HT, Hilu KW (2010) Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst Evol 290:185–199CrossRefGoogle Scholar
  9. Garcia S, Garnatje T, Pellicer J, McArthur ED, Yakovlev SS, Vallés J (2009) Ribosomal DNA, heterochromatin, and correlation with genome size in diploid and polyploid North American endemic sagebrushes (Artemisia, Asteraceae). Genome 52:1012–1024CrossRefPubMedGoogle Scholar
  10. Gimenes MA, Lopes CR, Valls JFM (2002) Genetic relationships among Arachis species based on AFLP. Genet Mol Biol 25:349–353CrossRefGoogle Scholar
  11. Gregory WC, Gregory MP (1979) Exotic germplasm of Arachis L. interspecific hybrids. J Heredity 70:185–193CrossRefGoogle Scholar
  12. Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough JA (1973) Structures and genetic resources of peanuts. In: Wilson CT (ed) Peanuts—culture and uses. Am Peanut Res and Educ Assoc, Stillwater, pp 47–133Google Scholar
  13. Greilhuber RJ, Speta F (1976) C-banded karyotypes in the Scilla hohenackeri group, S. persica and Puschkinia (Liliaceae). Plant Syst Evol 126:149–188CrossRefGoogle Scholar
  14. Hoshino AA, Bravo JP, Angelici CM, Barbosa AVG, Lopes CR, Gimenes MA (2006) Heterologous microsatellite primer pairs informative for the whole genus Arachis. Genet. Mol Biol 29:665–675Google Scholar
  15. Jahnavi MR, Murty UR (1985) A preliminary pachytene analysis of two species of Arachis L. Theor Appl Genet 70:157–165PubMedGoogle Scholar
  16. Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186Google Scholar
  17. Krishnan P, Sapra VT, Soliman KM, Zipf A (2001) FISH mapping of the 5 S and 18S-28 S rDNA loci in different species of Glycine. J Heredity 92:295–300CrossRefGoogle Scholar
  18. Lavia GI (2000) Chromosome studies in wild Arachis (Leguminosae). Caryologia 53:277–281CrossRefGoogle Scholar
  19. Lavia GI, Fernández A, Seijo JG (2008) Cytogenetic and molecular evidences on the evolutionary relationships among Arachis species. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1E. Science Publishers, Calcutta, pp 101–134Google Scholar
  20. Lavia GI, Ortiz AM, Fernández A, Seijo JG (2011) Origin of triploid Arachis pintoi Krapov. and W.C. Gregory (Leguminosae) by autopolyploidy evidenced by FISH and meiotic behavior. Ann Bot 108:103–111CrossRefPubMedPubMedCentralGoogle Scholar
  21. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  22. Li R, Taylor S, Jenkins G (2001) Unravelling the phylogeny of tetraploid Vicia amoena (Fabaceae) and its diploid relatives using chromosomal landmarks. Hereditas 134:219–224CrossRefPubMedGoogle Scholar
  23. Lim KY, Matyasek R, Kovarik A, Leitch A (2007) Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot 100:219–224CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mallikarjuna N (2004) Meiotic study of intersectional hybrids between Arachis hypogaea, A. duranensis and A. diogoi with A. glabrata. IAN 24:7–8Google Scholar
  25. Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  26. Muir JP, Butler TJ, Ocumpaugh WR, Simpson CE (2010) ‘Latitude 34’, a perennial peanut for cool, dry climates. J Plant Reg 4:106–108CrossRefGoogle Scholar
  27. Nielen S, Almeida LM, Carneiro VTC, Araujo ACG (2010) Physical mapping of rDNA genes corroborates allopolyploid origin in apomitic Brachiaria brizantha. Sex Plant Reprod 23:45–51CrossRefPubMedGoogle Scholar
  28. Nóbile PM, Gimenes MA, Valls JFM, Lopes CR (2004) Genetic variation within and among species of genus Arachis, section Rhizomatosae. Genet Resour Crop Evol 51:299–307CrossRefGoogle Scholar
  29. Ortiz AM, Seijo JG, Fernández A, Lavia GI (2011) Meiotic behavior and pollen viability of tetraploid Arachis glabrata and A. nitida species (Section Rhizomatosae, Leguminosae): implications concerning their polyploid nature and seed set production. Plant Syst Evol 292:73–83CrossRefGoogle Scholar
  30. Peñaloza A, Valls JFM (2005) Chromosome number and satellite chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 14:65–72Google Scholar
  31. Piellicer J, Garcia S, Valles J, Kondo Katsuhiko, Garnatje T (2013) FISH mapping of 35 S and 5 S rRNA genes in Artemisia subgenus Dracunculus (Asteraceae): changes in number of loci during polyploid evolution and their systematic implications. Bot J Linn Soc 171:655–666CrossRefGoogle Scholar
  32. Pires J, Lim CKY, Kovarík A, Sek RM, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035CrossRefPubMedGoogle Scholar
  33. Prine GM (1964) Forage possibilities in the genus Arachis. Soil Crop Sci Soc Fla Proc 24:187–196Google Scholar
  34. Prine GM. (1972) Perennial peanuts for forage. Soil Crop Sci Soc Fla 32:33–35Google Scholar
  35. Prine GM, Dunavin LS, Moore JE, Roush RD (1981) “Florigraze” rhizoma peanut: a perennial forage legume. Agr Exp Sta, Univ of Florida, Gainsville, Circular S-275Google Scholar
  36. Prine GM, Dunavin LS, Gennon RJ, Roush RD (1986) “Arbrook” rhizoma peanut: a perennial forage legume. Agr Exp Sta, Univ of Florida, Gainsville, Circular S-332Google Scholar
  37. Raman VS (1981) Nature of chromosome pairing in allopolyploids of Arachis and their stability. Cytologia 46:307–321CrossRefGoogle Scholar
  38. Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:239–443CrossRefGoogle Scholar
  39. Robledo G, Seijo G (2008) Characterization of the Arachis (Leguminosae) d genome using fluorescence in situ hybridization (FISH) chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724CrossRefGoogle Scholar
  40. Robledo G, Seijo G (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046CrossRefPubMedGoogle Scholar
  41. Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307CrossRefPubMedGoogle Scholar
  42. Robledo G, Lavia GI, Seijo JG (2010) Genome re-assignation of Arachis trinitensis (Sect. Arachis, Leguminosae) and considerations on its implication in the genetic origin of peanut. Genet Mol Biol 33:714–718CrossRefPubMedPubMedCentralGoogle Scholar
  43. Romero-Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  44. Rouse RE, Roka F, Miavitz-Brown EM (2004) Guide for establishing perennial peanut as a landscape groundcover. Proc Fla State Hort Soc 117:289–290Google Scholar
  45. Samoluk SS, Robledo G, Podio M, Chalup L, Ortiz JPA, Pessino SC, Seijo JG (2015) First insight into divergence, representation and chromosome distribution of reverse transcriptase fragments from L1 retrotransposons in peanut and wild relative species. Genetica 143:113–125CrossRefPubMedGoogle Scholar
  46. Santana SH, Valls JFM (2015) Arachis veigae (Fabaceae), the most dispersed wild species of the genus, and yet taxonomically overlooked. Bonplandia 24:139–150Google Scholar
  47. Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58:307–324CrossRefPubMedGoogle Scholar
  48. Seijo JG, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5 S and 18–25S rRNA genes evidences that Arachis duranensis and A. ipaënsis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303CrossRefPubMedGoogle Scholar
  49. Seijo G, Samoluk SS, Ortiz AM, Silvestri MC, Chalup L, Robledo G, Lavia GI (2017) Cytological features of peanut genome. In: Varshney R, Pandey M, Puppala N (eds) The peanut genome, compendium of plant genomes series. Springer, Germany (in press)Google Scholar
  50. Silvestri MC, Ortiz AM, Lavia GI (2015) rDNA loci and heterochromatin positions support a distinct genome type for ‘x = 9 species’ of section Arachis (Arachis, Leguminosae). Plant Syst Evol 301:555–562CrossRefGoogle Scholar
  51. Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 96–137CrossRefGoogle Scholar
  52. Smartt J, Stalker HT (1982) Speciation and cytogenetics in Arachis. In: Pattee HE, Young CT (eds) Peanut science and technology. Am Peanut Res and Educ Assoc, Yoakum, pp 21–49Google Scholar
  53. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27665–27675Google Scholar
  54. Souza LGR, Crosa O, Speranza P, Guerra M (2012) Cytogenetic and molecular evidence suggest multiple origins and geographical parthenogenesis in Nothoscordum gracile (Alliaceae). Ann Bot 109:987–999CrossRefPubMedPubMedCentralGoogle Scholar
  55. Stalker HT (1985) Cytotaxonomy of Arachis. In: Proceedings of International Workshop on Cytogenetics of Arachis. ICRISAT Center, Patancheru, pp 65–79Google Scholar
  56. Stalker HT (1991) A new species section Arachis of peanuts with d genome. Am J Bot 78:630–637CrossRefGoogle Scholar
  57. Tomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by hybridization. Genome 40:406–410CrossRefGoogle Scholar
  58. Valente SES, Gimenes MA, Valls JFM, Lopes CR (2003) Genetic variation within and among species of five sections of the genus Arachis L. (Leguminosae) using RAPDs. Genet Resour Crop Evol 50:841–848CrossRefGoogle Scholar
  59. Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–64Google Scholar
  60. Valls JFM, Costa LC, Custodio AR (2013) A novel trifoliolate species of Arachis (Fabaceae) and further comments on the taxonomic section Trierectoides. Bonplandia 22:91–97Google Scholar
  61. Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park JM, Jang CG, Sun GM (2007) Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669–682CrossRefPubMedGoogle Scholar
  62. Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF (2008) Karyotype diversification and evolution in diploid and polyploidy South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101:909–918CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Alejandra Marcela Ortiz
    • 1
    • 2
  • Germán Robledo
    • 1
    • 2
  • Guillermo Seijo
    • 1
    • 2
  • José Francisco Montenegro Valls
    • 3
  • Graciela Inés Lavia
    • 1
    • 2
  1. 1.Instituto de Botánica del Nordeste (CONICET-UNNE)CorrientesArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE)CorrientesArgentina
  3. 3.Embrapa Recursos Genéticos e BiotecnologiaBrasíliaBrazil

Personalised recommendations