Journal of Plant Research

, Volume 131, Issue 3, pp 525–542 | Cite as

Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage

  • Parameswaran Chidambaranathan
  • Prasanth Tej Kumar Jagannadham
  • Viswanathan Satheesh
  • Deshika Kohli
  • Santosh Halasabala Basavarajappa
  • Bharadwaj Chellapilla
  • Jitendra Kumar
  • Pradeep Kumar Jain
  • R. Srinivasan
Regular Paper

Abstract

The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

Keywords

DNA binding domain Phylogeny Duplication of Hsfs Digital expression Pod development stage Heat stress-inducible gene expression Heat stress responsive element (HSE) ABA-responsive elements (ABRE) 

Notes

Acknowledgements

The authors thank the Indian Council of Agricultural Research for financial assistance under the functional genomics component of Network Project on Transgenic Crops and the Emeritus Scientist Scheme to RS. PC acknowledges the SRF fellowship provided by Council of Scientific and Industrial Research (CSIR). JPTK and VS acknowledge the SRF fellowship provided by IARI. We also thank Dr. K.V. Prabhu and Dr. Rajinder Singh for providing the facilities to conduct the experiment in the National Phytotron Facility, IARI.

Supplementary material

10265_2017_948_MOESM1_ESM.pdf (129 kb)
Supplementary material 1 (PDF 129 KB)

References

  1. Almoguera C, Rojas A, Díaz-Martín J, Prieto-Dapena P, Carranco R, Jordano J (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J Biol Chem 277:43866–43872CrossRefPubMedGoogle Scholar
  2. Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487CrossRefPubMedGoogle Scholar
  3. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94CrossRefPubMedGoogle Scholar
  4. Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for the extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143:251–262CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chauhan H, Khurana N, Agarwal P, Khurana P (2011) Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol Genet Genom 286:171–187CrossRefGoogle Scholar
  6. Chung E, Kim KM, Lee JH (2013) Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. J Genet Genom 40:127–135CrossRefGoogle Scholar
  7. Cicero MP, Hubl ST, Harrison CJ, Littlefield O, Hardy JA, Nelson HCM (2001) The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Nucleic Acids Res 29:1715–1723CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018CrossRefPubMedPubMedCentralGoogle Scholar
  9. Deokar A, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar’an B (2014) Genome-wide SNP identification in chickpea for use in the development of a high-density genetic map and improvement of the chickpea reference genome assembly. BMC Genom 15:708CrossRefGoogle Scholar
  10. Devasirvatham V, Gaur PM, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. F Crop Res 142:9–19CrossRefGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  12. Enoki Y, Sakurai H (2011) Diversity in DNA recognition by heat shock transcription factors (HSFs) from model organisms. FEBS Lett 585:1293–1298CrossRefPubMedGoogle Scholar
  13. Evrard A, Kumar M, Lecourieux D, Lucks J, von Koskull-Döring P, Hirt H (2013) Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ 1:e59CrossRefPubMedPubMedCentralGoogle Scholar
  14. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230CrossRefPubMedGoogle Scholar
  15. Fragkostefanakis S, Röth S, Schleiff E, Scharf KD (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38:1881–1895CrossRefPubMedGoogle Scholar
  16. Garg R, Sahoo A, Tyagi AK, Jain M (2010) Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem Biophys Res Commun 396:283–288CrossRefPubMedGoogle Scholar
  17. Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giorno F, Guerriero G, Baric S, Mariani C (2012) Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genom 13:639CrossRefGoogle Scholar
  19. Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genom 35:105–118CrossRefGoogle Scholar
  20. Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157:1243–1254CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729CrossRefPubMedGoogle Scholar
  23. Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452–2462CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jin G-H, Gho H-J, Jung K-H (2013) A systematic view of rice heat shock transcription factor family using phylogenomic analysis. J Plant Physiol 170:321–329CrossRefPubMedGoogle Scholar
  25. Kotak S, Port M, Ganguli A, Bicker F, von Koskull-Döring P (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39:98–112CrossRefPubMedGoogle Scholar
  26. Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Res 9:1–26CrossRefGoogle Scholar
  27. Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F (2009) Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol Plant 2:152–165.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327CrossRefPubMedPubMedCentralGoogle Scholar
  29. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genom 12:76CrossRefGoogle Scholar
  31. Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, Cheng B (2014) Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PLoS One 9:e102825CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu H, Charng Y (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163:276–290CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lomsadze A, Ter-Hovhannisyan V, Chernoff Y, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506CrossRefPubMedPubMedCentralGoogle Scholar
  34. MapInspectsoftware (http://www.plantbreeding.wur.nl/UK/software_mapinspect.html) downloaded and analyzed on June, 2015
  35. Maruyama KY, Todaka DA, Mizoi JU, Yoshida TA, Kidokoro SA, Matsukura SA, Takasaki HI, Sakurai TE, Yamamoto YOY, Yoshiwara KY (2012) Identification of Cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49CrossRefPubMedGoogle Scholar
  36. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K-D (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121–e121CrossRefPubMedPubMedCentralGoogle Scholar
  38. Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mount DW (2009) Using hidden Markov models to align multiple sequences. Cold Spring Harb Protoc 2009:41Google Scholar
  40. Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1:215–238CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased thermotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58:3373–3383CrossRefPubMedGoogle Scholar
  43. Parween S, Nawaz K, Roy R, Pole AK, Suresh BV, Misra G, Bhatia S (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806CrossRefPubMedPubMedCentralGoogle Scholar
  44. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L-SP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69CrossRefPubMedGoogle Scholar
  45. Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD (2012) Genome-wide patterns of Arabidopsis gene expression in nature. PLoS Genet 8:e1002662CrossRefPubMedPubMedCentralGoogle Scholar
  46. Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function, and evolution. Biochim Biophys Acta 1819:104–119CrossRefPubMedGoogle Scholar
  47. Schultheiss J, Kunert O, Gase U, Scharf KD, Nover L, Rüterjans H (1996) Solution structure of the DNA-binding domain of the tomato heat stress transcription factor HSF24. Eur. J Biochem 236:911–921Google Scholar
  48. Sharma R, Rawat V, Suresh CG (2014) Genome-Wide Identification and Tissue-Specific Expression Analysis of UDP-Glycosyltransferases Genes Confirm Their Abundance in Cicer arietinum (Chickpea) Genome. PLoS One 9:e109715CrossRefPubMedPubMedCentralGoogle Scholar
  49. Soares-cavalcanti NM, Belarmino LC, Kido EA, Pandolfi V (2012) Overall picture of expressed Heat Shock Factors in Glycine max, Lotus japonicus, and Medicago truncatula. Genet Mol Biol 1:247–259CrossRefGoogle Scholar
  50. Song X, Liu G, Duan W, Liu T, Huang Z, Ren J, Li Y, Hou X (2014) Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Mol Genet Genom 289:541–551CrossRefGoogle Scholar
  51. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758CrossRefPubMedPubMedCentralGoogle Scholar
  54. Timothy LB, Mikael Bodén F, Buske A, Martin F, Charles EG, Luca C, Jingyuan R, Wilfred WL, William SN (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208CrossRefGoogle Scholar
  55. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo M-C (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246CrossRefPubMedGoogle Scholar
  56. Von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457CrossRefGoogle Scholar
  57. Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61CrossRefPubMedGoogle Scholar
  58. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefPubMedGoogle Scholar
  59. Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012a) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep 39:1877–1886CrossRefPubMedGoogle Scholar
  60. Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012b) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang J, Sun N, Deng T, Zhang L, Zuo K (2014) Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genom 15:961CrossRefGoogle Scholar
  62. Xin Q, Meng L, Leiting L, Hao Y, Juyou W, Shaoling Z (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol 15:12CrossRefGoogle Scholar
  63. Xue GP, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in the regulation of heat shock protein genes. J Exp Bot 65:539–557CrossRefPubMedGoogle Scholar
  64. Yang Z, Wang Y, Gao Y, Zhou Y, Zhang E, Hu Y, Yuan Y, Liang G, Xu C (2014) Adaptive evolution and divergent expression of heat stress transcription factors in grasses. BMC Evol Biol 14:147CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genom 286:321–332CrossRefGoogle Scholar
  66. Zafar SA, Hussain M, Raza M, Ahmed HGM-D, Rana IA, Sadia B, Atif RM (2016) Genome wide analysis of heat shock transcription factor (HSF) family in chickpea and its comparison with Arabidopsis. Plant Omics 9(2):136–141CrossRefGoogle Scholar
  67. Zhang L, Li Y, Xing D, Gao C (2009) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091CrossRefPubMedGoogle Scholar
  68. Zhou S, Zhang P, Jing Z, Shi J (2013) Genome-wide identification and analysis of heat shock transcription factor family in cucumber (Cucumis sativus L.). Plant Omi J 6:449–455Google Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Parameswaran Chidambaranathan
    • 1
    • 2
  • Prasanth Tej Kumar Jagannadham
    • 1
    • 2
  • Viswanathan Satheesh
    • 1
    • 2
  • Deshika Kohli
    • 1
  • Santosh Halasabala Basavarajappa
    • 3
  • Bharadwaj Chellapilla
    • 3
  • Jitendra Kumar
    • 3
  • Pradeep Kumar Jain
    • 1
    • 2
  • R. Srinivasan
    • 1
    • 2
    • 4
  1. 1.National Research Centre on Plant BiotechnologyNew DelhiIndia
  2. 2.Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
  4. 4.Emeritus Scientist, Molecular Biology and Biotechnology, NRC Plant BiotechnologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations